

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

OPERATING STANDBY REDUNDANT CONTROLLER TO
IMPROVE VOLTAGE SOURCE INVERTER RELIABILITY

by

Stephen T. Blevins

December 2007

 Thesis Advisor: Alexander L. Julian
 Second Reader: Roberto Cristi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Operating Standby Redundant Controller to Improve
Voltage Source Inverter Reliability
6. AUTHOR(S) Stephen T. Blevins

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis presents a control architecture that achieves operating standby redundancy for a voltage source

inverter controller. The system was designed to increase reliability by switching from the primary to the secondary
controller when a fault to the primary controller occurs. The behavior of the system was predicted using a computer
model representing the redundant controller architecture. The simulated results were then verified in lab hardware
comprising two FPGAs, a three phase rectifier, an LC filter, and a resistive load. Both simulated and experimental
results validate that the final redundant controller design switches between redundant controllers with a negligible
disturbance.

15. NUMBER OF
PAGES

147

14. SUBJECT TERMS Reliability, Voltage Source Inverter, Redundancy, Controller

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

OPERATING STANDBY REDUNDANT CONTROLLER TO IMPROVE
VOLTAGE SOURCE INVERTER RELIABILITY

Stephen T. Blevins

Lieutenant, United States Navy
B.S., Clemson University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2007

Author: Stephen T. Blevins

Approved by: Alexander L. Julian
Thesis Advisor

Roberto Cristi
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis presents a control architecture that achieves operating standby

redundancy for a voltage source inverter controller. The system was designed to increase

reliability by switching from the primary to the secondary controller when a fault to the

primary controller occurs. The behavior of the system was predicted using a computer

model representing the redundant controller architecture. The simulated results were then

verified in lab hardware comprising two FPGAs, a three phase rectifier, an LC filter, and

a resistive load. Both simulated and experimental results validate that the final redundant

controller design switches between redundant controllers with a negligible disturbance.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVES AND APPROACH...2
C. RELATED WORK ..4
D. RELIABILITY ANALYSIS..6
E. THESIS ORGANIZATION..8

II. CONTROLLER CONFIGURATION ...9
A. BASIC CONTROLLER DESIGN..9
B. THETA DESIGN ...10
C. FRAME TRANSFORMATIONS...11
D. PI CONTROLLERS..14
E. SPACE VECTOR MODULATION...15
F. ANALOG TO DIGITAL CONVERTER ..16
G. SIMULATED HARDWARE DESIGN..17
H. CHIPSCOPE ..18
I. CHAPTER SUMMARY..19

III. HARDWARE DESIGN...21
A. FPGA...22
B. CUSTOMIZED INTERFACE BOARD ..24
C. THREE PHASE RECTIFIER..27
D. LOAD..28
E. HARDAWARE SETUP...29
F. CHAPTER SUMMARY..30

IV. INDEPENDENT REDUNDANT CONTROLLER ARCHITECTURE...............31
A. FAULT SIGNAL..33

1. Primary Controller ..34
2. Secondary Controller...35

B. SWITCHING UNIT...35
C. SOFTWARE ADDITIONS FOR EXPERIMENTAL TESTING37
D. SIMULATED RESULTS ..39
E. EXPERIMENTAL RESULTS..40
F. CHAPTER SUMMARY..42

V. PHASE SYNCHRONIZED REDUNDANT ARCHITECTURE45
A. THETA SYNCHRONIZATIONS ..45

1. Primary Controller ..46
2. Secondary Controller...46

B. SIMULATED RESULTS ..47
C. EXPERIMENTAL RESULTS..48
D. CHAPTER SUMMARY..51

VI. FULLY SYNCRONIZED REDUNDANT ARCHITECTURE53

 viii

A. INITIAL CONDITIONS TRANSFER SOFTWARE.................................54
1. Primary Controller ..55
2. Secondary Controller...55

B. SIMULATED RESULTS ..56
1. Simulated Test of Serialization Software...56
2. Simulated Output Results ...59

C. EXPERIMENTAL RESULTS..61
1. Experimental Test of Serialization Software...................................61
2. Experimental Output Results ...64

D. CHAPTER SUMMARY..67

VII. CONCLUSIONS AND RECOMMENDATIONS...69
A. CONCLUSIONS ..69
B. RECOMMENDATIONS...70

1. Reduction of the Distortion in the VSI...70
2. Additional Redundant Components...70

APPENDIX A: SPACE VECTOR MODULATION NOTES ...71

APPENDIX B: VIRTEX II FPGA ...75

APPENDIX C: CUSTOMIZED INTERFACE BOARD ...77
A. PCB 123 LAYOUT ..77
B. SCHEMATIC...78

APPENDIX D: THREE PHASE RECTIFIER ...79

APPENDIX E: XILINX BLOCK CODE ..81

APPENDIX F: MATLAB CODE...107
A. INITIALIZATION FILE ..107
B. INTERNAL CODE..108

1. thetaconv2.m...108
2. overflow3.m ..108
3. ramp2mod.m ..109

C. SERIALIZATION CODE...109
1. System Control Ring..109
2. Manchester Encoder..114
3. Manchester Decoder ..115
4. Ring Decoder ..117

D. CHIPSCOPE CODE..120

LIST OF REFERENCES..123

INITIAL DISTRIBUTION LIST ...125

 ix

LIST OF FIGURES

Figure 1. Diagram of Hardware Configuration. .. xiv
Figure 2. XILINX Model of the Redundant Controller Design.xv
Figure 3. Block Diagram of Redundant Controller VSI. ..3
Figure 4. Controller Architecture for Operating Standby Redundancy with Four-

Switch Pole Inverter Topology [5]. ...6
Figure 5. Basic Space Vector Modulation Controller Configuration..............................10
Figure 6. Theta Software Design...11
Figure 7. Current Transformation Block...12
Figure 8. Voltage Transformation Block. ...13
Figure 9. Synchronous to Stationary Frame Transformation. ...14
Figure 10. Software for Vq PI Control Block..14
Figure 11. XILINX Block Software for Space Vector Modulation.15
Figure 12. XILINX A to D Converter Design...17
Figure 13. Simulated Hardware Design. ...18
Figure 14. Chipscope Interface Block [10]. ..19
Figure 15. Diagram of the Hardware Configuration. ..21
Figure 16. Virtex II High Level Block Diagram [11]. ..22
Figure 17. Virtex-II Development Kit. ..24
Figure 18. Customized Interface Board Connected to the FPGA.25
Figure 19. The Primary and Secondary Controller Boards Connected Together.26
Figure 20. Three Phase Rectifier plus Inverter with Brake Chopper from

SEMIKRON...27
Figure 21. LC Filter and Resistive Load Setup. ..28
Figure 22. The Complete Hardware Design..29
Figure 23. XILINX Model of the Redundant Controller System with Both Controllers

Operating Independently..32
Figure 24. Switching Unit Software..36
Figure 25. Switching Control Software for Experimental Results....................................38
Figure 26. Theta Test Pin. ...39
Figure 27. Three Simulated VSI Outputs with Random Theta Values for the

Secondary Controller with the Switching Event at 0.05 seconds.40
Figure 28. Three Single Phase Experimental VSI Output Measurements with No

Synchronization of the Primary and Secondary Controllers’ Theta Values
and the Switching Event at 0.05 seconds...41

Figure 29. Theta Pulses of the Two Controllers without Synchronization.42
Figure 30. Theta Synchronization Software for Primary Controller.................................46
Figure 31. Theta Synchronization Software for Secondary Controller.............................47
Figure 32. Simulated VSI Output with the Theta Values Synchronized and the

Switching Event at 0.05 seconds. ..48
Figure 33. Three Single Phase Experimental VSI Output Measurements with Theta

Synchronized and the Switching Event at 0.05 seconds..................................49

 x

Figure 34. Theta Pulses of the Two Controllers with Synchronization Prior to the
Fault. ..50

Figure 35. Theta Pulses of the Two Controllers with Synchronization Twenty
Seconds After the Fault..51

Figure 36. XILINX Model of the Redundant Controller Design with the Theta
Synchronization and the Integrator Values of the Primary Controller
Passed...53

Figure 37. Initial Condition Configuration for the Secondary Integrators........................56
Figure 38. Serialized Data of Four Twelve Bit Constants plus a Start and a Stop Bit......57
Figure 39. (a) The four integrator values of the primary controller prior to being

serialized by the software. (b) The four output values of the deserialization
block in the secondary controller...59

Figure 40. Simulated Single Phase Voltage Output with Theta Synchronized, Initial
Conditions Passed, and the Switching Event at 0.05 seconds.60

Figure 41. Simulated Three Phase Voltage Output with Theta Synchronized, Initial
Conditions Passed, and the Switching Event at 0.05 seconds.61

Figure 42. Serialized Data of Four Constants from the Primary and Secondary
boards...62

Figure 43. The Serialized Output from the Secondary Controller Superimposed on
the Output from the Primary Controller ...63

Figure 44. Three Single Phase Experimental Output Measurements with Theta
Synchronized, Initial Conditions Passed, and the Switching Event at 0.05
seconds...64

Figure 45. Experimental Measurements of the Three Phases of the VSI Output with
Theta Synchronized, Initial Conditions Passed, and the Switching Event at
0.05 seconds...65

Figure 46. Three Single Phase Experimental VSI Output Measurements with Faults
at random theta values and the Switching Event at 0.05 seconds....................66

 xi

LIST OF TABLES

Table 1. Fault Signal and Shut Off Switch Ports. ..34
Table 2. Gate Signal Outputs for the Secondary Controller. ...35
Table 3. Gate Signal Ports on the Primary Board. ...37
Table 4. Theta Test Pins...39
Table 5. Theta Synchronization Connections. ...47
Table 6. Serialization Pins. ..56

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

This thesis was conducted to ascertain the feasibility of a strategy to develop a

more reliable voltage source inverter (VSI) through operating standby redundant

controller architecture. The goal of this research was to determining the level of

disturbance in a VSI during a switching event between the primary and redundant

controller. Both of the controllers in the VSI for this research were designed based on the

closed loop space vector modulation controller developed in the NPS power lab that

contained an outer voltage Proportional-Integral (PI) control loop and an inner current PI

control loop.

The first objective of this thesis was to design a voltage source inverter with a

primary and secondary controller that had a fault signal to act as a failure in the primary

controller. When the fault was detected the system would automatically switch from the

primary to the secondary controller. The secondary controller would operate physically

independent of the primary controller to reduce the risk of damage when a fault occurred,

thereby providing true redundancy. Once the ability to switch between controllers was

established the second objective was to synchronize both controllers to prevent a random

phase shift when a fault occurred. The third and final objective was to enable the

secondary controller to begin running with the same internal values as the primary

controller had when the fault was detected in order to minimize any disturbance to the

VSI output.

The hardware in this project consisted of two Virtex II development kit FPGAs

connected to customized interface cards, a three phase rectifier, an LC filter, and a

resistive load. The Virtex II FPGA contained the design software that produced the six

modulated output signals that went into the six step three phase rectifier. The interface

card allowed the two FPGAs to pass information to each other as well as connect with the

other hardware components. The three phase rectifier connected to an LC filter with the

capacitors in a Delta configuration in order to run a load of three resistors in a Delta

configuration. Measurements of vab, vbc, ia, and ib were then fed back into the FPGA via

 xiv

the interface card in order to produce the hardware configuration of the voltage source

inverter with a closed loop control system shown in Figure 1.

Lfa

RL RL

RL

Cf

vbc

vca

Cf

Cf

Lfb

Lfc
vab

Two Custom interface
cards

(A/D converters and
digital I/O)

A+

A-

B+

B-

C+

C- brake

A+ A- B+ B- C+ C- brake

Current Feedback (ia)

+

vdc

-

Voltage Feedback (vbc)

Two XILINX Virtex II FPGAs

3
ph

as
e

A
C

 in
pu

t

+
Vab_in

-

Current Feedback (ib)

Voltage Feedback (vab)

Figure 1. Diagram of Hardware Configuration.

The controller software had been previously designed in the NPS power lab using

XILINX blocks to create the VHDL code for the FPGA and SIMULINK blocks to model

the behavior of the hardware components external to the FPGA and interface boards in

order to produce the computer simulations. There were several software additions and

modifications that had to be made to the controller design in order to achieve the research

objectives. The software used to create the redundant controller architecture consisted of

a primary and a secondary controller block, an A to D converter block that read the

feedback from the system, and a switching unit subsystem that switched between

controllers when a fault was sensed. SIMULINK blocks were used to simulate the

behavior of the three phase rectifier, LC filter, and resistive load in order to produce

predictive simulation results prior to loading the software on the FPGAs. The software

picture of the final design is shown in Figure 2.

 xv

U46

In1

In3

In5

f ault_in

In2

In4

ln6

Shut of f

Out1

Out2

Out3

Switching Unit

Step1

NOT

Logical
Operator1

NOTLogical
Operator

S1

S2

S3

Iabc

Vabc_FB

LC fil ter, LR load

 Out
Gateway Out3

 Out
Gateway Out2

 Out
Gateway Out1

v ab

v bc

Ia

Ib

f ault

Shut of f

theta_sy nc_in

initial integrator v alues

SA

SB

SC

Controller 2

v ab

v bc

Ia

Ib

f ault_in

manual_f ault

Shut of f

SA

SB

SC

f ault_out

theta_sy nc_out

integrator v alues

Controller 1

In4
In3

In2
In1
data_rate

In5

Run

Regen_on

Chipscope interface

V_f b

I_f b

v _ab

v _bc

ia

ib

inpin

data_rate

AtoD
conversion

Sy stem
Generator

Figure 2. XILINX Model of the Redundant Controller Design.

The first configuration of the redundant controller design only passed the fault

signal from the primary to the secondary controller, which produced considerable

disturbance in both the phase and amplitude of the VSI output during the switching event.

Once the ability to switch between the two controllers had been achieved the next step

was to try and eliminate the disturbance in the output due to the switching. The solution

to eliminate the random phase shift observed in the output was to send a synchronization

signal from the primary controller to the secondary controller. The synchronization

signal stopped the internal values of the two controllers from drifting apart over time due

to the independent clocks on both boards. This additional communication between the

two controllers produced an output that maintained its phase during the switching event

but still had amplitude disturbance.

 xvi

The solution for minimizing the amplitude disturbance was to pass the integrator

values in the PI control loops of the primary controller to the secondary controller so they

could be used as initial conditions for its integrator values when a fault occurred. Until

this point in the design it was necessary to keep the secondary controller’s integrator

values set to zero to prevent it from coming online at some random point and potentially

damaging the VSI. However, keeping the integrator values at zero prior to sensing a fault

in the system meant that the VSI output would have to start at zero and transition to

steady state, which caused the disturbance in the amplitude of the output.

The process of sending data between two physically independent FPGAs added

an extra degree of difficulty to the solution. In order to send a binary value out of the

FPGA there had to be one FPGA pin assigned for each bit of the value. Therefore, a

solution to serialize and concatenate the bits of the four integrator values of the primary

controller was developed. This allowed the four values to be sent from the primary

controller across a single bit output and received by the secondary controller by a single

bit input. Once the serialized data was in the secondary board it was deserialized into the

four separate values through the deserializtion portion of the software and sent to the

appropriate PI control blocks. Both the simulated and experimental results of this design

showed virtually no disturbance in the VSI output during the switching event when the

synchronization signal and the serialized initial conditions were passed from the primary

to the secondary controller.

The VSI used in this thesis was designed using computer simulations that were

then confirmed through experimental results at each stage of the research. This thesis

successfully showed the ability of a VSI to sense the failure of the primary controller and

switch to the secondary controller without any disturbance in the voltage output.

Achieving these objectives demonstrated the potential for the reliability of a VSI to be

significantly improved through the implementation of operating standby redundant

controller architecture. Confirming the ability to seamlessly switch from one controller

to another while the system was in operation provides a basis for further development of

a robust redundant architecture for a VSI. Some follow on research that would be

required includes:

 xvii

• Reducing the distortion in the VSI output due the gain values and noise in

the hardware design.

• Implementation of additional redundant components such as a four-switch

pole inverter topology.

As our world becomes increasingly dependent on technology, the need to power

that technology with fewer interruptions is also increasing. The redundancy design

presented in this thesis was shown to be an effective approach to increase the power

supply reliability in both military and civilian industry.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

ACKNOWLEDGMENTS

I would like thank Professor Julian for his guidance and instruction during my

thesis research and throughout my time here at NPS. His exceptional teaching style has

been instrumental in every facet of my graduate education.

I would also like to thank Lieutenant Kenya Williamson and Captain Joe

O’Conner for always making themselves available to discuss ideas and give their advice.

Above all I would like to thank my wife Lisa for her love and support in

everything I do. Without you all of my accomplishments would be meaningless.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

This thesis was conducted to ascertain the feasibility of a strategy to develop a

more reliable voltage source inverter (VSI) through operating standby redundant

controller architecture. The goal of this research was to determine and minimize the level

of disturbance in the output of a VSI during a switching event from the primary to the

redundant controller. Both of the controllers in the VSI for this research were designed

as closed loop space vector modulation controllers that contained an outer voltage

Proportional-Integral (PI) control loop and an inner current PI control loop. The research

conducted on this VSI configuration used computer simulations and experimental

measurements to demonstrate the ability of the system to switch from a primary to a

secondary controller upon sensing a fault single. The results of these experiments also

demonstrated the amount of disturbance to the system output during the switching event

showing its potential for use in mission critical systems for both the military and civilian

industry.

The reduction in the output disturbance was a critical component of this research.

If the output disturbance during the switching event from the primary to the secondary

controller could not be reduced to an acceptable level, the redundant controller

architecture would not be a viable way to increase reliability. According to MIL-STD-

1399 section 300A, the maximum departure voltage ranges from plus or minus 6 to plus

or minus 2.5 percent, and the worst case voltage excursion from nominal user voltage

ranges from plus or minus 20 to plus or minus 5.5 percent depending on the type of

equipment being operated [1].

Increasing the reliability in electronic power supplies through redundant

architectures has obvious benefits for combat or shipboard systems that need to stay

online during critical operations. Any vital electronic system used for either military or

civilian applications would benefit from a power supply with increased reliability.

Although this research only dealt with one redundant controller in order to demonstrate

 2

the effects of the switching on the VSI output, the techniques in this research could also

be applied to designs with additional redundant components. All of the solutions in this

thesis were first implemented and evaluated using computer simulations, and then

physical models were built in order to produce real world experimental data.

B. OBJECTIVES AND APPROACH

The first objective of this thesis was to design a voltage source inverter with a

primary and secondary controller that had a fault signal to simulate a failure in the

primary controller. When the fault was detected the system would automatically switch

from the primary to the secondary controller. The secondary controller would operate

physically independent of the primary controller to reduce the risk of damage when a

fault occurred, thereby providing true redundancy. Once the ability to switch between

controllers was established the second objective was to synchronize both controllers to

prevent a random phase shift when a fault occurred. The third and final objective was to

enable the secondary controller to begin running with the same internal values as the

primary controller had when the fault was detected in order to minimize any disturbance

to the VSI output.

The basic design layout for this thesis to achieve all of the objectives is shown in

Figure 3. The controllers were loaded on two separate boards with three physical

connections going from the primary to the secondary controller. The first connection was

to pass the fault signal, which would initialize the integrators of the secondary controller

when the primary controller failed. The fault signal was also sent from the primary

controller to the switching unit in order to switch the output gate signals from the primary

to the secondary controller. Placing the controllers on separate boards with a fault signal

connecting the primary controller, secondary controller, and switching unit achieved the

first objective of the research. The second connection sent a pulse signal to keep the

internal values of the two controllers synchronized. This connection from the primary to

the secondary controller achieved the second objective. The third connection was to pass

the values of the primary controller’s integrators in order to provide a starting value for

the secondary controller’s integrators. This third connection from the primary to the

 3

secondary controller achieved the third objective of the research by enabling the

secondary controller to start with the same internal values that the primary controller had

when the fault was detected.

 Fault

Initial
conditions

Theta S
ync

Figure 3. Block Diagram of Redundant Controller VSI.

The redundant controller design was built with two FPGAs programmed using

XILINX System Generator and ISE foundation with a discrete algorithm representing the

controller architecture shown in Figure 3. XILINX blocks in SIMULINK were used to

design the software that was loaded on the two FPGA boards which enabled the

simulated behavior of the system to be observed prior to loading the software on the

boards. At each stage of the research the software simulation was run in SIMULINK,

and the output voltage was observed. Based on the simulated observation, the software

was adjusted accordingly until it produced the desired behavior. Once the simulation

 4

results were acceptable the software was loaded in the FPGAs and experimental

measurements were taken using oscilloscopes and Chipscope software from XILINX.

The experimental results were then compared with the software simulations to evaluate

any differences.

C. RELATED WORK

The issue of power source reliability has always been a subject of concern for

power engineers, and there has been a great deal of research done on different methods of

fault detection and redundancy to help increase reliability. A paper presented in 1998 at

the International Telecommunications Energy Conference showed evidence which

demonstrated the advantages of using modules operating in parallel to achieve increased

reliability in dc-ac inverter systems used in uninterrupted power supply systems [2]. Two

different redundant configurations, a master-slave and a multi-master, were evaluated to

determine the most reliable. The master-slave configuration consisted of one central

intelligence module (master) and several local intelligence modules (slaves) that could

partly take control of a master failure. The multi-master configuration was designed with

all of the modules as independent and equal with full digital control. The multi-master

configuration was mathematically shown to be more reliable than the master-slave due to

the dependence of all the local intelligence modules on the one centralized master.

Therefore, the greater the level of dependency in a redundant inverter system the less

reliability the system will have.

Another important issue related to redundancy is the ability to identify and detect

the fault modes of an inverter system in order to properly implement the redundant

architecture. One such paper explored various fault modes of a voltage-fed Pulse Width

Modulation (PWM) inverter system [3]. This research showed an alternative method for

increasing reliability in a system as well as the complexity involved in trying to identify

specific faults in a system. While it did not address redundant applications, it did

demonstrate how the proper detection of a fault in an inverter could help increase

reliability by allowing the system to compensate for the fault and operate safely in a

degraded mode. An advantage redundant architecture has over fault compensation is the

 5

ability to simply shut down the affected component and bring the redundant component

online to avoid running the system in a degraded state.

Achieving increased reliability through redundant architectures is also being

actively researched for the civilian process industries. A paper concerning reliability of

different megawatt drive concepts also discussed some optional redundant designs for a

VSI [4]. The redundant approach for that research was to create multiple redundant

cellular structures of the Insulated Gate Bipolar Transistor (IGBT) building blocks of the

VSI.

These papers on related reliability topics are just a few examples of how diverse

this research is in the field of power electronics. The approach taken in this thesis was

based on the design concepts presented in reference [5]. In that paper an in depth

analysis of the reliability of two different redundant inverter topologies were compared.

The redundant four-switch-pole topology was determined to be more reliable than the

alternative of a redundant two-switch pole topology. The concept of placing the four-

switch-pole inverter in the operating standby redundant controller design was then

presented. The block diagram of overall design is shown in Figure 4.

 6

FPGA IGBT Selection/Control #3

Ib
Vab

Vbc

Controller
#2

Controller
#1

Gate Drive
S_A1

Gate Drive
S_A8

Ia

Run

Ib
Vab

Vbc

Ia

sync
Gate Drive

S_B1

Gate Drive
S_B8

Gate Drive
S_C1

Gate Drive
S_C8

FPGA IGBT Selection/Control #2

FPGA IGBT Selection/Control #1

Switch

Phase A

Undervoltage
Desat

Gates

Fault #2

Gates

Phase B

Phase C

IGBT Selection

Fault #1

3 Element Voting
Gate signals (24)IGBT failures

IGBT Failures & Gate signalsfrom each

Figure 4. Controller Architecture for Operating Standby Redundancy with
Four-Switch Pole Inverter Topology [5].

This thesis took the first steps toward determining the validity of this design by

showing the level of disturbance in the VSI output produced from switching to the

redundant controller when the primary controller failed. Developing an operating

standby redundant controller architecture that would produce little to no disturbance in

the output of the VSI was necessary to achieve before this design could be explored

further. For this research a regular three phase inverter topology without any switching

redundancy was used in order to specifically focus on the controller redundancy.

D. RELIABILITY ANALYSIS

The primary reason for this research was to make a VSI more reliable through the

addition of a redundant controller. Therefore, the affects of the additional components on

the overall reliability of a VSI should first be quantified. The potential increase in

reliability for the VSI can be demonstrated by determining the reliability of each

 7

additional component and how the set up of those components affect the overall system

using reference [6]. In this thesis the VSI had an additional controller placed in parallel

to the original controller, and that parallel configuration was then placed in series with a

switching unit. In order to calculate reliability it is first necessary to define the failure

rate (λ), which is shown in equation (1.1). Reliability as a function of time is then

expressed by equation (1.2), which produces a value greater than 0 and less than 1.

 Number of failures
Total operating hours

λ = (1.1)

 () tR t e λ−= (1.2)

Since the failure of both controllers is required for the system to fail, the primary

and secondary controllers are considered to be running in parallel when calculating the

reliability of the system. Equation (1.3) shows the calculation of components in parallel

with different reliability values, where n represents the number of components in parallel.

Equation (1.4) is a modification of equation (1.3) to represent when the reliability of each

component is equal. The reliability of components operating in series is shown in

equation (1.5), where n represents the number of components in series. Based on these

equations the change in reliability from a single controller (Rcontr) to a redundant

configuration with a second controller that has the same reliability and a switching unit in

series with a reliability of (Rsu) can be expressed by equation (1.6).

 1 21 (1)(1).....(1)parallel nR R R R= − − − − (1.3)

 1 (1)n
parallelR R= − − (1.4)

 1 2()().....()series nR R R R= (1.5)

 2[1 (1)]Total su contrR R R= − − (1.6)

 8

From equation (1.6) it can be shown that the reliability of the VSI has the

potential to be significantly increased by placing a redundant controller in parallel with

the primary controller. However, the reliability of the system also has the potential to be

decreased based on the reliability of the switching unit. These equations demonstrate the

trade-offs that must be considered when using redundant components to increase

reliability.

E. THESIS ORGANIZATION

The following chapters of this thesis are laid out to provide a clear understanding

of what was used in the design process and how the research was conducted. Chapter II

gives a detailed description of the software for the closed loop controller used as the

foundation for both the primary and secondary controllers in the system. Chapter III

describes the hardware components that were chosen for the design and how they

interacted. Chapter IV discusses the software design used to produce the basic redundant

controller architecture that achieved the first objective of the research. Chapter IV also

provides the simulated and experimental results of that design. Chapter V presents the

approach used to synchronize the internal values of the two controllers in order to

eliminate the phase shift in the VSI output during the switching event which achieved the

second objective of the research. The simulated and experimental results for that design

are also provided in the chapter. Chapter VI presents the design used to achieve the third

and final objective of the research along with the simulated and experimental results that

demonstrated the ability of the design to switch with negligible disturbance. Finally,

Chapter VII presents the conclusions made based on all the simulated and experimental

results of the voltage source inverter designs. This chapter also discusses the potential

for follow on work based on this research.

 9

II. CONTROLLER CONFIGURATION

The approach used to achieve the goals for this thesis was based on the controller

design chosen to be implemented in the VSI. Both of the controllers in the VSI for this

research were based on software that had been previously designed in the NPS power lab

to use space vector modulation to modulate the six transistor switches of the three phase

rectifier [7]. The closed loop configuration of the controllers contained an outer voltage

PI control loop and an inner current PI control loop. The software was designed using

the XILINX block set to produce this type of controller and SIMULINK blocks to model

the behavior of the hardware components external to the FPGA and interface boards.

The XILINX blocks were software additions to SIMULINK that generate the VHDL

code required to load the design on the FPGA while the SIMULINK blocks provided a

mathematical representation of the hardware in order to produce computer generated

simulations of the system. The following sections give a breakdown of the basic

controller software design along with the mathematical SIMULINK design that was used

to implement the redundant controller architecture simulations for this thesis. For the

purposes of this paper, the superscripts e and s represent the synchronous and stationary

frames respectively, the subscripts q and d represent the q and d axes, and the subscripts

a, b, and c represent the three phases of the voltage and current values.

A. BASIC CONTROLLER DESIGN

The basic design of the controller was the foundation that all of the other software

components in this thesis were designed around. This basic configuration was then

modified to produce an efficient redundant architecture with a primary controller and one

redundant secondary controller. In the design of the closed loop controller the values for

the two synchronous frame reference phase voltages (Ve
qref and Ve

dref) were set to 50

volts and 0 volts respectively by using two constants from the XILINX block library.

The controller worked by comparing the reference values to the voltage feedback values

in the synchronous frame and sending the results into the first PI controller. The first PI

controller then produced reference values for the currents that were compared to the

 10

current feedback values in the synchronous frame and sent into the second PI controller.

The outputs of the second PI controller were then converted from the synchronous to the

stationary frame and sent into the space vector modulation block. The space vector

modulation block took the final voltage reference values and translated them into gate

signals to be read by the three phase rectifier. Finally the output of the hardware

configuration was sent back into the A to D converter to close the loop on the control

system. This basic operation for both controllers is laid out in the block diagram in

Figure 5.

A
to

 D
 c

on
ve

rs
io

n

Figure 5. Basic Space Vector Modulation Controller Configuration.

B. THETA DESIGN

The rate of theta was also designed into the software using the XILINX block

library. The basic design for the theta value was made up of a constant value of 2π

multiplied by the frequency of the system (100 Hz) multiplied by the clock period of the

system (40ns). This constant value was sampled every clock period and sent into an

accumulator. The accumulator output was then sent back into a rational block that was

set to trigger the accumulator to reset when the output value reached 2π . The output of

the theta block was then converted from a value of 0 to 2π to a value of 0 to 210 in order

to be implemented in the rest of the code. The XILINX configuration used to produce

the theta value for the system is shown in Figure 6.

 11

1
theta_XILINX

1

omega*delta_T

1

Two_PI

a

b
a<b
z-0

Relational

x 163
z-1

CMult

b

rst
q

Accumulator

Fix_20_19

Fix_24_19Fix_14_10 UFix_10_0
Bool

Figure 6. Theta Software Design.

C. FRAME TRANSFORMATIONS

Since the controller used space vector modulation, it was necessary to convert the

feedback voltages into the qd frame. The value from the theta design was used in the

transformation blocks to convert the Vab, Vbc, Ia, and Ib feedback values produced by the

A to D converter to the synchronous frame values as shown in Figure 5. The voltage

values converted into the synchronous frame (Ve
q and Ve

d) were then subtracted from the

set reference values and sent into the voltage PI control block. Similarly the current

values converted into the synchronous frame (Ie
q and Ie

d) were subtracted from the

reference currents produced by the voltage PI control block and sent to the current PI

control block. The final frame conversion block took the new Ve
q and Ve

d values

produced by the current PI control block and converted them from the synchronous to the

stationary frame.

The equations used to build the abc to qde transformation blocks in the code were

derived from equations (2.1) and (2.2), which were taken from reference [8].

 ()2 2 2cos cos cos
3 3 3q a b cf f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.1)

 ()2 2 2sin sin sin
3 3 3d a b cf f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.2)

Using the fact that 0a b cv v v+ + = and i 0a b ci i+ + = in three phase configurations

allowed fc to be substituted in equations (2.1) and (2.2) yielding the following equations.

 () ()2 2 2cos cos cos
3 3 3q a b a bf f f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.3)

 12

 () ()2 2 2sin sin sin
3 3 3d a b a bf f f f fπ πθ θ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − + − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.4)

These equations can be further simplified to yield

 ()2 2 2 2cos cos cos cos
3 3 3 3q a bf f fπ π πθ θ θ θ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.5)

 ()2 2 2 2sin sin sin sin
3 3 3 3d a bf f fπ π πθ θ θ θ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + − − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.6)

A final simplification using trigonometric identities yields the equations used to

design the transformation block for the currents in the software.

 () ()()2 sin sin33q a bi i iπθ θ= + + (2.7)

 ()2 cos cos
3 3d a bi i iπθ θ⎛ ⎞⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.8)

The XILINX block software that corresponds to equations (2.7) and (2.8) is

shown in Figure 7.

4
cos_theta

3
sin_theta

2
id_e

1
iq_e

theta cos

SineCosine3

theta sin

SineCosine2

x(-1)

Negate1

x(-1)

Negate

a

b
(ab)z-2

Mult3

a

b
(ab)z-2

Mult2

a

b
(ab)z-2

Mult1

a

b
(ab)z-2

Mult

z-1

Delay1

z-1

Delay

171

Constant

x 1.156

CMult1

x 1.156

CMult

a

b
a + b

AddSub2

a

b
a + b

AddSub1

a

b
a + b

AddSub

5
cos

4
sin

3
theta_eX

2

Ib

1

Ia

Fix_16_15

Fix_16_4

Fix_16_4

Fix_16_15

Fix_19_6

Fix_19_6

Fix_18_6

Fix_18_6

Fix_18_6

Fix_18_6

Fix_18_6

Fix_18_6

UFix_10_0

UFix_8_0

UFix_10_0

Fix_17_15

Fix_16_15

Fix_16_15 Fix_17_15

Fix_16_15

Fix_16_15

Figure 7. Current Transformation Block.

The line-to-line voltage transformations were derived by using the fact that

ab a bv v v= − and ()bc b c b a bv v v v v v= − = − − − can be manipulated to produce

 13

2 1
3 3a ab bcv v v= + and 1 1

3 3b ab bcv v v= − + which, when substituted in equations (2.7) and

(2.8) yields

 () ()2 2 sin sin sin sin
3 33 3q ab bc ab bcf f f f fπ πθ θ θ θ⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.9)

 () ()2 2 cos cos cos cos
3 33 3q ab bc ab bcf f f f fπ πθ θ θ θ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.10)

These equations can be simplified further to produce

 () ()2 2sin sin sin sin
3 33 3q ab bcf f fπ πθ θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (2.11)

 () ()2 2cos cos cos cos
3 33 3q ab bcf f fπ πθ θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
 (2.12)

A final simplification using trigonometric identities yields the equations used to

design the transformation block for the voltages in the software

 ()2 cos sin
3 6q ab bcv v v πθ θ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.13)

 ()2 sin cos
3 6q ab bcv v v πθ θ⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.14)

The XILINX block software that corresponds to equations (2.13) and (2.14) is

shown in Figure 8.

4
cos

3
sine

2
vd_e

1
vq_e

theta cos

SineCosine3

theta sin

SineCosine2

theta
sin
cos

SineCosine1

x(-1)

Negate1
a

b
(ab)z-2

Mult3

a

b
(ab)z-2

Mult2

a

b
(ab)z-2

Mult1

a

b
(ab)z-2

Mult

85

Constant

x 0.6641
z-1

CMult1

x 0.6641
z-1

CMult

a

b
a + b

AddSub2

a

b
a + b

AddSub1

a

b
a + b

AddSub

3
theta_eX

2

v_bc

1

v_ab
Fix_16_4

Fix_17_5

Fix_17_5

Fix_16_5

Fix_16_5

Fix_16_5

Fix_16_5

UFix_10_0

UFix_8_0

UFix_10_0

Fix_16_15

Fix_16_4

Fix_16_15

Fix_16_15

Fix_16_15

Fix_16_15

Fix_16_5

Fix_16_5

Figure 8. Voltage Transformation Block.

 14

The transformation block that transforms the voltage values from the synchronous

to the stationary frame was designed based on the following equation from reference [8].

() ()
() ()

cos sin
sin cos

qs e e qe

ds e e de

v v
v v

θ θ
θ θ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.15)

 The XILINX representation of equation (2.15) is shown in Figure 9.

2
vd_s

1
vq_s

x(-1)

Negate

a

b
(ab)z-1

Mult3

a

b
(ab)z-1

Mult2

a

b
(ab)z-1

Mult1

a

b
(ab)z-1

Mult

z-1

Delay1

z-1

Delay

x 1

CMult1

x 1

CMult

a

b
a + b

AddSub1

a

b
a + b

AddSub

4
cos_theta

3
sin_theta

2
vd_e

1
vq_e

Fix_16_5

Fix_16_5

Fix_16_15 Fix_17_15

Fix_16_15
Fix_19_7

Fix_19_7

Fix_18_7

Fix_18_7

Fix_18_7

Fix_18_7

Fix_16_13

Fix_16_13

Fix_16_15

Fix_16_15

Figure 9. Synchronous to Stationary Frame Transformation.

D. PI CONTROLLERS

1
iq_e_ref

x 0.1667

CMult1

x 1.042e-007

CMult

a

b
a + bz-1

AddSub1

a

b
a - b

AddSub
b

rst
q

Accumulator
3

reset

2
v_meas

1
vq_e_ref

Fix_37_35

Fix_19_5

Fix_26_23

Fix_16_3

Fix_16_5

Fix_16_6

Bool

Fix_45_35

Figure 10. Software for Vq PI Control Block.

All four PI controllers had the same basic design which consisted of the reference

value being subtracted by the corresponding measured value. That value was then sent to

two separate gain operators to produce a product and an integrator value. The integrator

 15

value was sent into an accumulator, and the accumulated value was summed with the

product value to produce the appropriate reference output. The controller software had a

PI control block with the same design for each of the four variables: Vq, Vd, Iq, Id. The

basic design of all four PI controllers is represented in this section by the Vq PI control

block shown in Figure 10.

E. SPACE VECTOR MODULATION

The controller design selected for this thesis was based on space vector

modulation to produce the output gate signals for each controller that would modulate the

six IGBTs in the three phase rectifier based on the input of the qd voltage values in the

stationary qd frame presented in Figure 9. The qd values in the stationary frame were

converted to Polar coordinates before being sent into the space vector modulation block.

The XILINX block configuration that produced the space vector modulation for this

controller is presented in Figure 11.

Scale by 2 to get Ty/2

3
SC

2
SB

1
SA

ramp

x

mag

x_o

mag_o

sample and hold

theta sin

SineCosine1

theta sin

SineCosine

X >> 1
z-0

Shift1

X >> 1
z-0

Shift

 Out
SCout
U49

 Out
SBout
U48

 Out
SAout
U47

sel

d0

d1

Mux1

sel

d0

d1

Mux

a

b
(ab)z-1

Mult1

a

b
(ab)z-1

Mult

Sector1

Sector2

Sector3

Sector4

Sector5

Sector6

Tx/2

Ty /2

Tz/2

ramp

SA

SB

SC

Modulation

x ythetaconv2

MCode3

x zramp2mod

MCode2

x

sector1
sector2
sector3
sector4
sector5
sector6

z

ov erflow3

MCode

or
z-0

Logical

z-3
z-3

z-3
z-3

z-3
z-3

out

Counter2

out

Counter1

0.5

Constant2

171

Constant1

a

b
a - b

AddSub2

a

b
a + b

AddSub1

a

b
a - b

AddSub

2
theta

1
vqd_mag

Figure 11. XILINX Block Software for Space Vector Modulation.

The input magnitude and the theta value, that was converted into a binary value,

was sent into a sample and hold block that was then sent into an MCode block that

 16

selected the appropriate sector of the space vector modulation hexagon. The sector

selection outputs were then sent into the modulation block. The additional XILINX

blocks in the figure produce the duty cycles that are also sent into the modulation block

along with the ramp input. The inputs to the modulation block were sent through

numerous arithmetic and logic blocks that produced the three gate signals for the

controller [9]. The full set of notes that provide a detailed explanation of the algorithms

that describe how the sample and hold block and the modulation block work together

with the rest of the design is located in Appendix A.

F. ANALOG TO DIGITAL CONVERTER

The A to D converter for the controller was designed with XILINX blocks to take

in the voltage and current feedback signals from the SIMULINK blocks that provided a

mathematical representation of real world hardware. While the XILINX blocks were

used to create the software code that could be loaded on an FPGA, the SIMULINK

blocks were used to represent real world components outside of an FPGA in order to

create accurate simulations prior to loading the software on a board. The SIMULINK

blocks were also used as pulse generators to simulate the internal clocks on a board. In

order for the XILINX blocks to read the SIMULINK blocks in the software the

SIMULINK blocks must be sent into one of the yellow input blocks seen in Figure 12.

The data into an input block could be a Boolean, signed (2’s complement), or unsigned

data. However, the input block had to assign one FPGA pin for every data bit. The grey

output blocks represent outputs that did not have an FPGA output pin assigned and were

used to send information back to the SIMULINK blocks. Once the SIMULINK data was

read into the XINLINX blocks of the A to D converter, the timing from the simulated

clock values were used to select the two current and two voltage values that were then

sent into the controller. The multiplication blocks prior to the output pins were used to

offset any scaling of the feedback signals from the hardware when the software was

actually loaded on the FPGA.

 17

delay added for metastabil i ty

disable memory

4
ib

3
ia

2
v_bc

1
v_ab

In1 Out1

pulse

In2

In1

AD4

AD1

AD2

AD3

Subsystem

Step

a

b
a>b
z-1

Relational

Product

Multiport
Switch

Inputs

CurrentState

Outputs

Inputs
CurrentState

Outputs

Mealy State Machine

 Out
MEMCSn

-K-

Gain4

-K-

Gain3

-K-

Gain2

-K-

Gain1

FRSTDATAn1
 In

FRSTDATAn

EOCn2

 In

EOCn

em

em

z-1

Delay4

z-1

Delay3

z-1

Delay2

z-1

Delay1

 In

DATA_IN

out

Counter

1

Constant2

4

Constant1

hi

lo

Concat

 Out
CONVSTn

x 15.98
z-1

CMult4

x 15.98
z-1

CMult3

x 15.97
z-1

CMult2
x 15.97
z-1

CMult1

Add1

Add

 Out

AD_state1

 Out

AD_state

2
I_fb

1
V_fb

Figure 12. XILINX A to D Converter Design.

G. SIMULATED HARDWARE DESIGN

The software design in SIMULINK that was used to mathematically simulate the

external hardware of the VSI in order to create a computer generated output prior to

loading the software on the FPGA is shown in Figure 13. The modulated gate signals

from the control were sent into this block and mathematically manipulated to produce an

output that simulated the gate signals going through a LC filter, with the capacitors in a

wye configuration and an LR load in a wye configuration. The values of the simulated

filter inductors and capacitors were 350 Hµ and 60 Fµ respectively. The values of the

simulated load resistors were 20Ω . Since the hardware design for this research only

used a resistive load, the inductor values in the simulated load were set at 100µΗ to

account for the inductance in the wires of the hardware.

 18

2
Vabc_FB

1
Iabc

1
s

Integrator1

1
s

Integrator

x' = Ax+Bu
 y = Cx+Du

Inductor currents

1/Lob

Vdc

Vdc

-K-

1/Loa

-K-

Vdc

em

1/2

1/2

1/2

x' = Ax+Bu
 y = Cx+Du

Cap voltages

3
S3

2
S2

1
S1

Figure 13. Simulated Hardware Design.

H. CHIPSCOPE

A Chipscope interface block was also a previously designed piece of software that

was incorporated into the research design but was not a direct component of the

controller. The Chipscope interface block was taken directly from a buck converter lab

for EC4150 at NPS [10] and is shown in Figure 14. The software was chosen because it

was designed to provide two switches that could be controlled through the Chipscope

program from XILINX that was loaded on the computer. The Chipscope interface

software was implemented as a remote computer based switch to help prevent

unnecessary physical contact with the boards that might have lead to unintentional

damage to the hardware. The XILINX simulation multiplexer blocks also allowed the

Chipscope interface block to operate the step function that was used for the switching

event in the computer simulations as well as the computer switches in the experimental

tests. One other feature provided by the software in the Chipscope interface block was

the ability to read four internal signals and display them in Chipscope. This feature was

also taken from the buck converter lab software to provide the ability to take internal

 19

measurements of the software without the need to send them to external pins on the

FPGA. The code that was used in the black box block of the software is listed in

Appendix F.

2
Regen_on

1
Run

 In

simulation of VIO
from Chipscope1

 In

simulation of VIO
from Chipscope

Step1

Step

Simulation Multiplexer1

Simulation Multiplexer

ch1

ch2

ch3

ch4

Out1

Out2

Out3

Out4

Data conversion

cast

Convert2

cast

Convert1hi

lo

Concat

ind

ila_clock

ind2

outd

load_on

Black Box

6
In5

5
data_rate

4
In1

3
In2

2
In3

1
In4

UFix_1_0

UFix_48_0

Bool

Bool

Bool

Bool

UFix_1_0

Booldouble

Bool

double

Bool

Bool

UFix_12_0

UFix_12_0

UFix_12_0

UFix_12_0

Fix_16_4

Fix_16_4

Fix_16_4

Fix_16_4

Figure 14. Chipscope Interface Block [10].

I. CHAPTER SUMMARY

This chapter presented the XILINX block components of the basic controller

design that were used to implement the redundant controller architecture in this research.

The controller was a closed loop designed with an outer voltage PI control loop and an

inner current PI control loop. The controller used space vector modulation to modulate

its output gate signals. This chapter also showed the way in which SIMULINK and

XILINX blocks were used to develop computer simulations that could then be directly

transferred to an FPGA for experimental testing. The next chapter presents the hardware

configuration that was set up to conduct the experimental testing of the software design.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. HARDWARE DESIGN

The next step in the research process was to select hardware components that

could be used to conduct real world experiments in order to collect experimental data

from the redundant controller design to compare with computer simulated results. The

hardware in this project consisted of two Virtex II development kit FPGAs connected to

customized interface cards, a three phase rectifier, an LC filter, and a resistive load. The

Virtex II FPGA contained the design software that produced the six modulated output

signals that went into the six step inverter. The interface card, which included an A/D

converter and digital I/O ports, allowed the FPGA to connect with the six step three phase

rectifier from SEMIKRON. The rectifier then connected to an LC filter with the

capacitors in a Delta configuration in order to run a load of three resistors in a Delta

configuration. Measurements of vab, vbc, ia, and ib were then fed back into the FPGA via

the interface card in order to produce a voltage source inverter with a closed loop control

system as shown in Figure 15.

Lfa

RL RL

RL

Cf

vbc

vca

Cf

Cf

Lfb

Lfc
vab

Two Custom interface
cards

(A/D converters and
digital I/O)

A+

A-

B+

B-

C+

C- brake

A+ A- B+ B- C+ C- brake

Current Feedback (ia)

+

vdc

-

Voltage Feedback (vbc)

Two XILINX Virtex II FPGAs

3
ph

as
e

A
C

 in
pu

t

+
Vab_in

-

Current Feedback (ib)

Voltage Feedback (vab)

Figure 15. Diagram of the Hardware Configuration.

 22

A. FPGA

Figure 16. Virtex II High Level Block Diagram [11].

 23

Two Virtex II FPGA boards were used in this research to design the hardware

configuration used to collect the experimental data. The boards had been previously

purchased and used for other NPS research because of the versatility provided in the

development and verification of FPGA designs. The Virtex II provided an Indexed

Sequential Processor (ISP) Programmable Read Only Memory (PROM) along with a

Joint Test Action Group (JTAG) connector that allowed direct configuration of the FPGA

from the computer [11]. A high level block diagram of the FPGA from the Virtex II

Reference Board User’s Guide is shown in Figure 16.

Using the FPGA to design the controller instead of solid state components

provided greater flexibility in making changes to the design along with the ability to load

different versions of the design without creating additional boards. The primary board

held the software for the primary controller and the switching unit, and the second board

held the software for the secondary controller only. The primary FPGA was also used to

send the outputs of the selected controller to the three phase rectifier through the

switching software located on the primary FPGA. All of the information passed from the

primary to the secondary controller had to be sent externally through the interface cards

connected to the FPGAs. Likewise the output values of the secondary controller had to

be sent back into the primary board externally to the switching unit so it could be passed

to the rectifier when a fault occurred. The three modulated outputs from the primary

controller and the fault signal from the primary controller were the only information

signals passed to the switching unit internally during the experiment. If the design were

to be put into practical use, the switching unit should be loaded on its own separate board

to avoid a potential failure in the switching unit in the event that the primary controller

failure somehow caused damage to the board. However, due to resource limitations only

two boards were available, and having the switching unit on the primary board did not

have an effect on the measurements of the switching disturbance for the purposes of the

experimental research. The product description for the Virtex II board used in the

experiments is located in Appendix B. A picture of the Virtex II board used for the

experiments is shown in Figure 17.

 24

Figure 17. Virtex-II Development Kit.

B. CUSTOMIZED INTERFACE BOARD

The interface board was specifically designed with I/O ports, an A to D converter,

and four voltage level shifters to interact with the Virtex II board configuration used in

this thesis and to provide physical connections between the FPGAs and the other

hardware devices in the design. The interface boards connected directly to the pins of the

FPGAs. Jumper connections were also connected between the two boards to send the 5V

supply from the interface to the Virtex II boards. The interface board connected to the

Virtex II development kit with the 5V supply connected is shown in Figure 18. The

layout of the interface board that was created using the PCB123 design software package

is shown in Appendix C.

 25

Figure 18. Customized Interface Board Connected to the FPGA.

Six BNC connections on the primary interface board were used to send out the

gate signals from the selected controller to the six step three phase rectifier. Another

BNC connector on the primary board was used to send out the fault signal to a BNC port

on the secondary controller. Two more BNC connections on the primary board were

used to send the theta synchronization signal and the serialized initial conditions out to

the secondary board. That data was then sent into the secondary board through two

resistor inputs. On the secondary interface board three BNC connections were used to

send the gate signals of the secondary controller out to the primary board. Those signals

were then sent into three input resistor connections on the primary board in order to be

read by the switching unit in the primary FPGA.

 26

The four feedback values from the VSI were sent into four additional BNC ports

on each board that connected to the A to D converter to complete the closed control loop

for each controller. Each controller also had a BNC that was used as an emergency

manual shut off switch. The primary and secondary boards connected together are shown

in Figure 19. This figure also shows the XILINX parallel cable connected to the

primary board that was used to load the software through the JTAG port on the FPGA

directly from the computer. The specific I/O ports and their corresponding FPGA pin

connections in the software are covered in detail in the following chapters.

Figure 19. The Primary and Secondary Controller Boards Connected
Together.

 27

C. THREE PHASE RECTIFIER

Figure 20. Three Phase Rectifier plus Inverter with Brake Chopper from
SEMIKRON.

The SEMITEACH-IGBT used as the six step three phase inverter for the

hardware configuration in this thesis is shown in Figure 20. The SEMITEACH is a

multi-function IGBT converter with a brake chopper/rectifier. It is built with a

transparent casing that allowed the operator to view the internal components. It also had

several safety features which made it an ideal piece of equipment to be used in the

laboratory environment [12]. Further technical specification for the SEMITEACH-IGBT

is listed in Appendix D. The six gate signal outputs from the primary controller were

sent into the six BNC connectors on the side of the SEMITEACH box that corresponded

to the positive and negative gates for the three phases of the rectifier. A three phase AC

power supply was applied to box through the three banana connectors on top of the box

 28

centered toward the front. Finally the three banana connectors centered in the top of the

box produced the output of the three phase rectifier that was sent to the LC filter and on

to the resistive load.

D. LOAD

Figure 21. LC Filter and Resistive Load Setup.

The output of the three phase rectifier was sent out to three inductors connected to

a delta configuration of capacitors to produce an LC filter. The value of the filter

capacitors and the load resistors were adjusted to be equal to the computer simulated

values. The inductors and capacitors of the LC filter had a value of 350µΗ and 20 Fµ

respectively. The LC filter limited the current and voltage in the time domain to produce

a low pass filter that filtered out the modulation energy of the output and allowed the 100

Hz sine wave through before going into the load. Three 60Ω resistors in a delta

 29

configuration were then used for the VSI load and the line to line voltage output across

the resistors was measured for the experimental results. The LC filter and resistive load

configuration in the hardware are shown in Figure 21.

E. HARDAWARE SETUP

Figure 22. The Complete Hardware Design.

The components described in the preceding sections were finally implemented in

the hardware design shown in Figure 22. This picture of the overall hardware design

shows the hardware components described in the previous sections as well as the AC

power supply for the three phase rectifier block, the DC power supply for the interface

board, and the voltage and current probes used to provide the feedback signals for the

closed loop design. Using this hardware configuration designed around the two FPGAs

provided the ability to develop and test multiple software solutions for the redundant

 30

architecture without making any major changes to the hardware components. This ability

saved both time and resources throughout the research and design process.

F. CHAPTER SUMMARY

This chapter described each of the hardware components used in the design to

collect experimental data. The ability to physically separate the primary and the

secondary controllers was vital to the experiments in order to ensure true redundancy was

maintained in the design. Without physically separating the two controllers it would not

have been possible to adequately demonstrate the data transfer necessary to eliminate the

disturbance of the VSI output during the switching event. The next chapter describes the

software design that was developed to achieve the first objective of the research which

was to enable the VSI to switch from a primary controller to a secondary controller when

a fault was detected. Each aspect of the redundant design is identified along with the

FPGA and interface board pins assigned to the inputs and outputs of the controllers. The

simulated and experimental results are then presented to confirm the design operated

properly.

 31

IV. INDEPENDENT REDUNDANT CONTROLLER
ARCHITECTURE

This chapter discusses the original redundant controller design developed to

achieve the first objective of this research to have a VSI with an independently operating

redundant controller that would sense a fault in the primary controller and switch. The

software used to create the redundant controller architecture consisted of a primary and a

secondary controller block, an A to D converter block that read the feedback from the

system, and a switching unit subsystem that switched between controllers when a fault

was sensed. SIMULINK blocks were used to simulate the behavior of the three phase

rectifier, LC filter, and resistive load in order to produce predictive simulation results

prior to loading the software on the FPGAs. Finally, a Chipscope interface block was

added to the software design which was able to set the fault signal during the computer

simulations. The purpose for this additional software was to allow the operator to trigger

the fault and shut off switches through the computer during the experimental tests rather

than using physical switches.

In order to design the VSI with a redundant controller architecture the basic

controller design discussed in Chapter II was given several modifications to enable it to

sense input data as well as pass output data to the other elements of the design. The

ability of the primary controller to communicate with the secondary controller and the

switching unit were the first steps that had to be achieved. In the initial stages of the

research one design was developed for both controllers which made it possible for the

same code to be loaded on each board. However, as the design evolved to incorporate the

passing of more data between the controllers it was not possible to keep the software

exactly the same, and two separate configurations had to be developed.

The simulation software for the basic redundant controller design, which included

the XILINX blocks that generated the code for the FPGA and the SIMULINK blocks that

simulated the behavior of the external elements in the hardware, is shown in Figure 23.

This configuration was used to collect simulated results in order to predict how the

redundant controller architecture would behave in the real world system. The results

 32

obtained from this configuration gave reasonable estimates of the actual system’s

behavior and provided a high degree of confidence and predictability when moving to the

real world experiments.

U46

In1

In3

In5

f ault_in

In2

In4

ln6

Shut of f

Out1

Out2

Out3

Switching Unit

Step1

NOT

Logical
Operator1

NOTLogical
Operator

S1

S2

S3

Iabc

Vabc_FB

LC fil ter, LR load

 Out
Gateway Out3

 Out
Gateway Out2

 Out
Gateway Out1

v ab

v bc

Ia

Ib

f ault

SA

SB

SC

Controller 2

v ab

v bc

Ia

Ib

f ault_in

manual_f ault

Shut of f

SA

SB

SC

f ault_out

Controller 1

In4
In3
In2

In1
data_rate
In5

Run

Regen_on

Chipscope interface

V_f b

I_f b

v _ab

v _bc

ia

ib

inpin

data_rate

AtoD
conversion

Sy stem
Generator

Figure 23. XILINX Model of the Redundant Controller System with Both
Controllers Operating Independently.

The following sections address the issues considered during the initial stages of

the design process and how the basic software components discussed in Chapter II were

modified for this research. They also describe the new components that were developed

and how all of the software elements interacted to create the redundant controller

architecture.

 33

A. FAULT SIGNAL

Although fault detection was an element of this research, it was not necessary to

design the system to detect multiple types of specific faults in the controller in order to

measure the disturbance of the output during the switching event. Therefore, the

software was designed to simply read a high/low fault signal in the primary controller.

The fault signal had the same input and output port assignments on both boards, and the

input port on the interface card that read the fault signal was designed as an inverter.

Therefore, when value of the fault signal is mentioned in this thesis it refers to the value

of the signal being sent into the primary FPGA which is the inverted value of the manual

switch signal going into the interface card.

The input port for the fault signal on the primary board was set up as a physical

switch that could be used manually, and the input pin on the secondary interface card

simply read the output from the primary interface card and inverted it before sending the

signal into the secondary FPGA. An emergency shut off switch was designed into both

boards to provide an extra level of protection for the equipment. The shut off switch was

routed to the same BNC port on both interface cards. On the primary controller board the

manual shut off switch was designed to turn off all of the signals being sent to the

switches in the switching unit, preventing any gate signals from going into the three

phase rectifier. The manual shut off switch on the primary controller board was also

designed to send a signal that would reset the four PI accumulators of the primary

controller. The manual shut off switch on the secondary controller board was designed to

independently reset the four PI accumulators of the secondary controller. The physical

input and output pins used for the fault signal and manual shut off switch on both boards

are listed in Table 1.

 34

Fault Signals Vertex II (FPGA Pins) Interface (BNC Ports)

Input C4 U2

Output T5 U46

Emergency Shut Off D1 U1

Table 1. Fault Signal and Shut Off Switch Ports.

Additional XILINX blocks were included to enable the design to use Chipscope

to perform the switching event. This addition was used to help reduce the risk of

inadvertently damaging the boards by using the physical switches when collecting the

experimental data. The software used for the Chipscope switch was the same software

described in Chapter II, which provided the ability to use switches and to take internal

readings of the system without using additional FPGA pins. Due to the fact that

Chipscope could only be used through the XILINX parallel cable, the internal switches in

the software could only be used on one board at a time. Therefore, the switching event

was controlled through the primary controller board during the experimental testing.

1. Primary Controller

The fault signal on the primary controller could either be detected by the signal on

the manual input switch or by the internal switch created by the Chipscope software. The

fault signal was sent into the primary controller’s four PI control blocks, the switching

unit, and the secondary controller’s four PI control blocks. When the fault signal was

low the accumulators in the primary controller were enabled and the switching unit

selected the primary controller’s gate signals to be sent into the three phase rectifier. The

fault signal was also designed to be sent from the primary interface card to the secondary

interface card, via a BNC cable, where it would be inverted to a high signal and sent into

the secondary FPGA. Therefore, the system would continue to run with the primary

controller until the fault signal in the primary FPGA went high indicating a failure of the

primary controller.

 35

2. Secondary Controller

Prior to a failure of the primary controller, the inverted fault signal going into the

secondary FPGA kept the accumulators of the four PI controllers set to zero. This

ensured the secondary controller would not start at some arbitrary value when it took

over. When a fault was detected in the primary controller, the secondary PI controller’s

accumulators were enabled, and the switching unit selected the gate signals of the

secondary controller to be sent into the three phase rectifier. The output pins of the three

gate signals that were sent into the switching unit from the secondary controller are listed

in Table 2.

Secondary Gate Signals Vertex II (FPGA Pins) Interface (BNC Ports)

SA N6 U47

SB P6 U48

SC P7 U49

Table 2. Gate Signal Outputs for the Secondary Controller.

The ability of the secondary controller to accurately receive the fault signal from

the primary controller and pass the output gate signals back to a switching unit was the

first design requirement in creating the redundant controller architecture. In order to

achieve this goal, the next step was to design a switching unit that could receive the

output data from both controllers and reliably switch from the primary to the secondary

controller. The next section discusses the switching unit design and how it managed the

outputs of the two controllers to complete the systems redundant architecture.

B. SWITCHING UNIT

The switching unit design that determined which controller would be used by the

voltage source inverter is shown in Figure 24. The switching unit was designed to read

the gate signals from both controllers, the fault signal from the primary controller and the

emergency shut off signal. The negative value of each gate signal input was created

making a total of six signals from the primary and six signals from the secondary

 36

controller. Each gate signal from the primary and secondary controller were then sent to

an AND logic gate along with the emergency shut off signal. The subsequent six values

of each controller were sent to six individual switches that were designed to switch from

the primary to the secondary controller values when the fault signal went high. The

switching block then sent out the positive and negative values of the selected controller to

the selected FPGA pins.

 In

SCin
FLTC

 In

SBin

 In

SAin

sel

d0

d1

Mux5

sel

d0

d1

Mux4

sel

d0

d1

Mux3

sel

d0

d1

Mux2

sel

d0

d1

Mux1

sel

d0

d1

Mux

and
z-0

Logical9

and
z-0

Logical8

and
z-0

Logical7

and
z-0

Logical6

and
z-0

Logical5

and
z-0

Logical4

and
z-0

Logical3

and
z-0

Logical2

and
z-0

Logical12

and
z-0

Logical11

and
z-0

Logical10

and
z-0

Logical1

or
z-0

Logical

not

Inverter7

not

Inverter6

not

Inverter5

not

Inverter4

not

Inverter3

not

Inverter2

not

Inverter1

 Out
Cplus
U42

 Out
Cminus

U43

 In

COMM1

 Out
Bplus
U40

 Out
Bminus

U41

 Out
Aplus
U38

 Out
Aminus

U39

8
Shut off

7
ln6

6
In4

5
In2

4
fault_in

3
In5

2
In3

1
In1

Figure 24. Switching Unit Software.

The values from the switching unit were sent from the FPGA pins to the BNC

ports on the interface card which were then connected to the three phase rectifier. The

gate signal values from the software and the corresponding FPGA and BNC connections

are listed in Table 3.

 37

Switching Unit Outputs FPGA Pins BNC Ports

A+ C16 U38

A- D16 U39

B+ E13 U40

B- H13 U41

C+ H14 U42

C- H15 U43

Table 3. Gate Signal Ports on the Primary Board.

At this point the system was able to sense a fault in the primary controller and

switch to a secondary controller without turning the system off which achieved the first

research objective.

C. SOFTWARE ADDITIONS FOR EXPERIMENTAL TESTING

This section describes the software components that were not necessary for the

redundant controller operations but were added to assist in the experimental

measurements. A switching control subsystem was used in the experimental testing of

the design to enable multiple measurements of a specific configuration to be properly

compared. The switching events for the computer simulated results were able to be

controlled by a simple step function that could be selected to switch at the same set time

for multiple measurements. However, the switching event for the experimental results

was triggered by an actual fault switch that was controlled by the operator. A switching

event initiated at random by an operator was not capable of occurring at the same point of

the output twice. Therefore, a second requirement, based on the value of theta was added

to ensure that the fault signal that would trigger the switching event would always occur

at the same point of the VSI output. This block of code was only necessary to collect the

experimental data that need to be compared, and would not be included in any practical

design.

 38

The XILINX block design of the switching control software is shown in Figure

25. While the fault switch signal was low, the register block remained enabled which

allow a low fault signal to be sent out. When the fault switch was activated by the

operator, a high signal was sent into one input of the AND gate. The high fault switch

also sent a low signal into one of the OR gate inputs. At this point the AND gate was still

sending out a low signal, and the OR gate was still sending out a high signal to enable the

register block. Therefore, the fault output was still low. The high fault output signal

would not occur until a predetermined value of theta was also achieved. When both the

fault switch and the theta value were selected, a high signal was sent out to the register

block which passed the high signal. The high fault output signal was then sent back as a

low signal into the second OR gate input which turned off the enable port and latched the

high signal into the register. Latching the fault sign prevented the theta value from

affecting the switching event any further.

1
Fault out

d
qz-1

Register1

or
z-0

Logical3

and
z-0

Logical2

not

Inverter2
not

Inverter1

2
switching_trigger

1
fault_in

Bool

Bool

Bool

Bool

Bool

Bool

Bool

Figure 25. Switching Control Software for Experimental Results.

Another modification made to both the primary and the secondary controller at

this stage of the research was a theta test point that would send a signal to an output pin

on each board. The addition to the theta software block that produced the test signal that

was collected during the experimental testing is shown in Figure 26. This test point was

designed into the software to provide additional experimental data on the behavior of the

theta values produced on each board. The test pin software was designed to send out a

signal that would produce a rising edge when the value of theta reached 5
3
π and a falling

edge when the theta accumulator reached 2π and reset to 0.

 39

1
theta_XILINX

0.0005035400390625

omega*delta_T

 Out
U5

1

Two_PI

a

b
a<b
z-0

Relational2

a

b
a<b
z-0

Relational

x 163
z-1

CMult

1

Angle_test_point

b

rst
q

Accumulator

Figure 26. Theta Test Pin.

The FPGA pin used for the theta test output and its corresponding interface board

connection for both controllers is listed in Table 4.

Theta Test Pins FPGA Pins Interface Connection

Test Output H4 U5

Table 4. Theta Test Pins.

D. SIMULATED RESULTS

Three measurements of a single phase of the simulated output when the VSI

switched between two independently operating controllers with no synchronization is

shown in Figure 27. Only one phase is present on the graph in order to better see the

disturbance produced by not having any synchronization between the primary and

secondary controllers. Since both controllers were operating in a single computer

program the theta offset in the three measurements had to be added to the secondary

controller manually to try and accurately simulate two physically separated clocks

counting at slightly different rates. The graph shows a period of about 0.08 seconds

between the switching event and the secondary controller achieving steady state

operations. It is important to note that this disturbance time could be longer or shorter

depending on the gain values chosen for the system. The disturbance in the VSI output

shown in the simulated results indicated the two main sources of the disturbance came

 40

from the phase shift due to the internal theta values in each controller and the transit time

required for the secondary controller to achieve steady state after the switching event

occurred.

0 0.05 0.1 0.15
-100

-80

-60

-40

-20

0

20

40

60

80

100
Vbc No Sync

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 27. Three Simulated VSI Outputs with Random Theta Values for the
Secondary Controller with the Switching Event at 0.05 seconds.

E. EXPERIMENTAL RESULTS

The experimental results of the redundant system at this stage of development are

shown in Figure 28. The graph displays three separate measurements on top of each

other which exhibit three separate, random phase shifts in the output of the VSI. The

graph also shows the major disturbance in the amplitude of the output while the

secondary controller’s accumulators achieved steady state. The behavior of the

experimental VSI inverter output was very similar to the predicted behavior produced by

 41

the simulated outputs. The similarities of these two outputs provided a high level of

confidence in the predictability of the computer simulation software used in this research.

Both the simulated and experimental results show a significant disturbance in the

amplitude and phase of the output during the switching event. These results illustrated

the need to develop the design further in order to produce an output that would meet

military standards [1].

0 0.05 0.1 0.15
-100

-80

-60

-40

-20

0

20

40

60

80

100
Three Measurements of Vbc No Sync

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 28. Three Single Phase Experimental VSI Output Measurements with
No Synchronization of the Primary and Secondary Controllers’ Theta

Values and the Switching Event at 0.05 seconds.

Further confirmation that the phase shift in the output was due to the internal theta

values of the two controllers drifting apart over time was provided by collecting

experimental data from the theta test pins in the controllers. The outputs of the theta test

pins on the primary and secondary boards at a random point of operation are shown in

Figure 29. The solid blue and broken red graphs represent the primary and secondary

 42

controllers’ theta values respectively. The rising edge of these graphs indicate when the

theta value of each controller reached 5
3
π , and the falling edge indicates when the theta

values reached 2π and reset. The clear difference in these experimental results helped to

verify the computer simulations predictions that the phase shift during the switching

event was being caused by the variation in the two independently operating theta values

of the controllers.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-10

-8

-6

-4

-2

0

2

4

6

8

10
Theta Sync Test

Time(sec)

V
ol

ts

Figure 29. Theta Pulses of the Two Controllers without Synchronization.

F. CHAPTER SUMMARY

This chapter provided a break down of the software design modifications made to

both the primary and secondary controllers in order to produce a VSI with operating

standby redundant controller architecture were both controllers operated independently of

each other. The simulated behavior of the redundant controller architecture presented in

 43

this chapter made it possible to develop the software design more thoroughly prior to

implementing it in the hardware. The ability to see the computer generated behavior of

the entire system was extremely beneficial in troubleshooting the software and guiding

the design development. The computer simulations of this design also provided

information with which to compare the experimental measurements of the software when

it was loaded in the FPGAs. The next chapter discusses the design issues involved in

eliminating the random phase shift of the VSI output during the switching event, and the

solution that was implemented to achieve the second objective of this thesis.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

V. PHASE SYNCHRONIZED REDUNDANT ARCHITECTURE

This chapter presents the software solution developed to eliminate the random

phase shift in the VSI output that was produced during the switching event with two

independently operating controllers. The modifications to the software of the primary

and secondary controllers in order to synchronize the theta values are explained. The

computer simulations of the VSI output are then presented which predict the behavior of

the design. Finally the experimental results are displayed to confirm the real world

operation of the new configuration.

A. THETA SYNCHRONIZATIONS

Once the system was able to effectively switch from the primary to the secondary

controller it was necessary to attempt to minimize the disturbance of the system output

during the switching event. Theta synchronization was the first step in controlling the

output of the secondary controller when the fault occurred. Since the controllers were

loaded on separate boards to help ensure greater reliability of the system during a failure

of the primary controller, the theta values of each controller would slowly drift apart over

time without some mechanism to keep them aligned. This difference in the internal theta

value of the two controllers would cause the output of the VSI to have a random phase

shift when the system switched from the primary to the secondary controller. Another

issue that had to be considered was the fact that any information passed from one FPGA

board to another would require the use of one output pin per bit of data.

Since the theta value for each controller was designed to count from 0 to 2π and

then reset the accumulator back to zero, the theta values could remain synchronized by

simply having a single pulse that would reset both theta accumulators at the same time. It

was also necessary to ensure that the synchronization between the primary and secondary

values of theta would not continue after a fault was detected in order to maintain true

redundancy. This single pulse method was considered the best solution because it only

required a single bit to pass the information needed to keep the theta value of both

controllers synchronized.

 46

1. Primary Controller

The modification that was made in the theta block of the primary controller

enabled it to pass the reset signal to the secondary controller before the fault was detected

and stop passing the signal after the detection of the fault. This modification is shown in

Figure 30. The reset pulse is sent to an AND logic gate with the inverted fault signal.

Prior to a failure, the inverted fault signal remains high and the AND gate will pass the

reset signal to the secondary controller keeping it synchronized with the primary

controller theta value. Once a failure in the primary controller is detected, the inverted

fault signal will go low which will prevent the reset pulse from the primary controller

from continuing to pass to the secondary controller’s theta block.

2
sync out

1
theta_XILINX

1

omega*delta_T

 Out
U5

 Out
U44

1

Two_PI

a

b
a<b
z-0

Relational2

a

b
a<b
z-0

Relational

and
z-0

Logical1

not

Inverter7

x 163
z-1

CMult

1

Angle_test_point

b

rst
q

Accumulator

1
fault

Figure 30. Theta Synchronization Software for Primary Controller.

2. Secondary Controller

The design modifications to the secondary controller’s theta block are shown in

Figure 31. The secondary controller was designed to accept the reset pulse from the

primary controller as well as continue to operate on its own once the pulse from the

primary controller stopped being sent. This was accomplished by bringing the reset

signal from the primary controller into an OR logic gate with the secondary controllers

reset signal. Since the synchronization pulse was delivered at the end of every 2π cycle,

any difference in the theta values of the primary and secondary controllers during that

 47

time would have been negligible. Therefore the reset signals from the primary controller

and the secondary controller would occur at the same time. The OR logic gate in the

design allows the theta software to continue to reset after the synchronization signal is

discontinued due to the detection of a fault in the primary controller.

1
theta_XILINX

1

omega*delta_T

 Out
U5

1

Two_PI

a

b
a<b
z-0

Relational2

a

b
a<b
z-0

Relational

 In

R51

or
z-0

Logical5

x 163
z-1

CMult

1

Angle_test_point

b

rst
q

Accumulator

1
sync in

Figure 31. Theta Synchronization Software for Secondary Controller.

The input and output pins used to synchronize the theta values of the primary and

secondary controllers are listed in Table 5. The FPGA pin on the primary board sent the

pulse signal to the primary interface board’s BNC connection listed in the table. The

primary interface board then sent the signal out to the secondary interface board’s BNC

connection, which was then sent into the FPGA input pin on the secondary board listed in

the table.

Synchronization pins FPGA Pins Interface Connection

Primary output L5 U44

Secondary input K3 R51

Table 5. Theta Synchronization Connections.

B. SIMULATED RESULTS

The theta offsets that were added to the secondary controller for the computer

simulations in Chapter IV were taken out, which automatically synchronized the theta

 48

values of the two controllers in the computer simulation. The simulated result of what

the VSI output should look like without any phase shift during the switching event is

shown in Figure 32. The fact that the theta values of the two controllers were identical

because the simulation was run on one computer made it difficult to determine if the theta

synchronization software was working. However, the simulated result still provided an

accurate output with which to compare the experimental results.

0 0.05 0.1 0.15
-100

-80

-60

-40

-20

0

20

40

60

80

100
Vbc Theta Sync

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 32. Simulated VSI Output with the Theta Values Synchronized and the
Switching Event at 0.05 seconds.

C. EXPERIMENTAL RESULTS

The experimental tests in this section confirmed that the theta synchronization

software added to the design eliminated the phase shift to the VSI output during the

switching event. The three experimental results of the VSI output for the redundant

 49

controller system with the theta synchronization pulse being sent from the primary to the

secondary board are shown in Figure 33. The switching control software was also

implemented for this experimental test in order to properly show the ability of the VSI to

maintain the same output phase during three separate failures of the primary controller.

0 0.05 0.1 0.15
-100

-80

-60

-40

-20

0

20

40

60

80

100
Three Measurements of Vbc Theta Sync

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 33. Three Single Phase Experimental VSI Output Measurements with
Theta Synchronized and the Switching Event at 0.05 seconds.

The behavior of all three experimental VSI inverter outputs was very similar to

the predicted behavior produced by the computer simulation. Although the disturbance

in the amplitude was still present during the switching event, the random phase shift

element of the disturbance had been removed by adding the theta synchronization pulse.

Although this still did not meet the military standards for voltage disturbance in a power

system [1], the ability to predict the disturbance in the output was a significant

improvement over the previous design presented in Chapter IV.

 50

A reevaluation of the theta test pins with the theta synchronization software

implemented showed that the theta values of the two controllers remained identical prior

to the switching event. The output of the theta test pins prior to the primary controller

failing is shown in Figure 34. The solid blue line and the broken red line indicate the

primary and secondary controller respectively. The figure shows that the rising edge,

which indicates when the theta values are 5
3
π , and the falling edge, which indicates

when the theta values are 2π were identical in both controllers before the primary

controller failed.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-10

-8

-6

-4

-2

0

2

4

6

8

10
Theta Sync Test

Time(sec)

V
ol

ts

Figure 34. Theta Pulses of the Two Controllers with Synchronization Prior to
the Fault.

The output of the theta test pins twenty seconds after the primary controller failed

is shown in Figure 35. It is apparent from the two graphs that the theta values ceased to

be synchronized once the secondary controller took over, and the two values slowly

 51

began to drift apart after the fault occurred. This experimental result also confirmed that

the feature in the software that helped to ensure that the secondary controller would not

be potentially corrupted by continuing to be connected to the primary controller after the

failure was functioning properly.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-10

-8

-6

-4

-2

0

2

4

6

8

10
Theta Sync Test

Time(sec)

V
ol

ts

Figure 35. Theta Pulses of the Two Controllers with Synchronization Twenty
Seconds After the Fault.

D. CHAPTER SUMMARY

This chapter discussed the software design modifications made to the theta

software in the primary and secondary controllers to eliminate the random phase shift in

the VSI output during the switching event. The simulated results of the design predicted

the pulse from the primary controller’s theta software would synchronize the theta values

of the two controllers at the end of every 2π cycle. Multiple experimental measurements

provided confirmation that the theta synchronization software was able to eliminate the

 52

phase shift in the output. Additional confirmation that the theta synchronization was

discontinued after the fault was detected was also provided from the theta test pins

located on both boards. This experimental information helped to confirm that the

redundancy of the system was being maintained. The next chapter discusses the design

issues involved in passing initial condition values to the four PI control blocks from the

primary controller to the four PI control blocks of the secondary controller to eliminate

the drop in the amplitude of the VSI output during the switching event.

 53

VI. FULLY SYNCHRONIZED REDUNDANT ARCHITECTURE

The final goal of the research was to design the redundant controller architecture

so that the secondary controller would come online at the same place the primary

controller failed. The final XILINX model that achieved all of the objectives of this

research is shown in Figure 36.

U46

In1

In3

In5

f ault_in

In2

In4

ln6

Shut of f

Out1

Out2

Out3

Switching Unit

Step1

NOT

Logical
Operator1

NOTLogical
Operator

S1

S2

S3

Iabc

Vabc_FB

LC fil ter, LR load

 Out
Gateway Out3

 Out
Gateway Out2

 Out
Gateway Out1

v ab

v bc

Ia

Ib

f ault

Shut of f

theta_sy nc_in

initial integrator v alues

SA

SB

SC

Controller 2

v ab

v bc

Ia

Ib

f ault_in

manual_f ault

Shut of f

SA

SB

SC

f ault_out

theta_sy nc_out

integrator v alues

Controller 1

In4

In3
In2
In1

data_rate
In5

Run

Regen_on

Chipscope interface

V_f b

I_f b

v _ab

v _bc

ia

ib

inpin

data_rate

AtoD
conversion

Sy stem
Generator

Figure 36. XILINX Model of the Redundant Controller Design with the Theta
Synchronization and the Integrator Values of the Primary Controller

Passed.

Until this point in the design it was necessary to keep the secondary controller’s

integrator values set to zero to prevent it from coming online at some random point and

potentially damaging the VSI. However, keeping the integrator values at zero prior to

 54

sensing a fault in the system meant that the VSI output would have to start at zero and

work its way back up to steady state. Although the loss of power would be brief, it would

not be an acceptable design to meet military standards [1]. This problem could be solved

by sending the four integrator values from the primary controller to the corresponding

integrators in the secondary controller to be used as a starting point when it came online.

However, the process of sending data between two physically independent FPGAs added

an extra degree of difficulty to that approach. In order to send a binary value out of the

FPGA there had to be one FPGA pin assigned for each bit of the value. Therefore, if four

twelve bit words were to be sent, forty-eight output pins on the FPGA would need to be

used to send each bit out. Since this would not have been a feasible solution given the

resources used in this research, an alternate way of passing the data had to be developed.

A. INITIAL CONDITIONS TRANSFER SOFTWARE

The solution that was implemented to achieve the objective of passing the initial

conditions from the primary to the secondary controller was to create additional code that

would serialize each of the twelve bit integrator values from the primary controller and

concatenate them into a string of forty-eight single bits. By doing this the data was able

to be sent using a single output pin on the primary FPGA and a single input pin on the

secondary FPGA. Additional code also had to be developed for the secondary controller

to deserialize the string of data back into four separate values that could be sent to the

appropriate integrators.

The serialization portion of the software was designed to take in four binary

values of any size, convert them to twelve bit values with specified binary points, and

reinterpret them into unsigned twelve bit values. The four unsigned twelve bit values

were then sent into a XILINX Mcode block where MATLAB code selected the four

values to be sent out to another Mcode block that serialized the bits into a Manchester

format. The final serialized output consisted of a start bit, a forty-eight bit string, and a

stop bit. This string was then sent into the deserializaion portion of the software were the

bits were reassembled back into four individual values. The Manchester coding scheme

used in the software interpreted a rising edge in the middle of a bit as a zero and a falling

 55

edge as a one. The serialization code is listed in Appendix F. Once the serial to parallel

software was shown to work reliably in the software, the four PI blocks in both the

primary and secondary controllers were modified to send and receive the data properly.

1. Primary Controller

The only change made to the primary controller was the addition of the

serialization portion of the software. No modifications to the PI control blocks were

needed to be made other than to send the integrator values to the serialization block. The

primary controller sent out all four integrator values into the serialization portion of the

software. The four values were serialized into a string of forty-eight bits and then sent

out a single bit output gate.

2. Secondary Controller

The secondary controller received and decoded the serialized data from the

primary controller using the deserialization portion of the software. The serialized bits

were then broken back out into four twelve bit unsigned values. Finally the four values

were reinterpreted into 2’s complement values with the appropriate binary points. The

appropriate integral value was then read by the corresponding PI control blocks through a

register latch until a fault occurred. When the secondary controller sensed the fault

signal, it took the last inputs sent to the four integrators and latched the values to be used

as the initial conditions for the secondary controller. The modifications made to the Ve
q

integrator are shown in Figure 37. The same design was used for all four integrators of

the secondary controller to achieve the initial conditions transfer.

 56

1
iq_e_ref

d

en
qz-1

Register

x 0.15

CMult1

x 1.042e-007

CMult

a

b
a + bz-1

AddSub2

a

b
a + bz-1

AddSub1

a

b
a - b

AddSub
b

rst
q

Accumulator

4
sync in

3
reset

2
I_meas

1
I_ref

Figure 37. Initial Condition Configuration for the Secondary Integrators.

The output pin used to send out the serialized data from the primary controller and

the input pin used to receive the data on the secondary controller are listed in Table 6.

Serialization pins FPGA Pins Interface Connection

Primary controller output T6 U45

Secondary controller input C8 R54

Table 6. Serialization Pins.

B. SIMULATED RESULTS

1. Simulated Test of Serialization Software

In order to test the code, computer simulations were conducted to demonstrate

that the serialization software could take in four distinct twelve bit values, send out one

bit at a time, and reassemble the bits back into the same four bit values. The Manchester

output of the serialization portion of the software with the four constant input values of

one, two, three, and four are shown in Figure 38. Each of the input constants were set as

sixteen bit 2’s complement values with binary point values of three. The serialization

 57

software then took each of the constant values and recast them as twelve bit values with

varying binary points assigned to work in the actual software design. The binary points

for the one through four values were eight, eight, two, and six respectively. The new

twelve bit values were reinterpreted into unsigned twelve bit values with no binary point

before being serialized and concatenated into a string of forty-eight bits. The four

individual binary values and the subsequent forty-eight bit string are shown in equation

(6.1).

Constant One = 000100000000
Constant Two = 001000000000
Constant Three = 000000001100
Constant Four = 000100000000
Serialized String = 000100000000001000000000000000001100000100000000

 (6.1)

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55

x 10-4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Serialized Data

Figure 38. Serialized Data of Four Twelve Bit Constants plus a Start and a
Stop Bit.

 58

Using the Manchester decoding described in this chapter, the forty-eight bit string

of data in equation (6.1) can be shown to correspond directly to the serialized string of

data, minus the start and stop bit, in Figure 38.

To test the deserialization portion of the software, and to provide further

confirmation that the serialization software would work in the redundant architecture

design, a computer simulation was run which displayed the four initial conditions of the

primary controller prior to being serialized and the four deserialized outputs in the

secondary controller. The graphical representations of these four signals before and after

the serialization software were then compared. The software was run for 50ms while the

primary controller was moving toward steady state. This simulation represented roughly

one thousand serialized strings of the four twelve bit words which provided a high degree

of confidence that the software was not producing any bit errors.

The simulated results of the four initial condition values being sent into the

serialization block of the primary controller and the four output values of the

deserialization block in the secondary controller are shown in Figure 39. The simulated

results of the graphs indicate the values sent from the primary controller were accurately

interpreted by the secondary controller without any bit errors.

 59

0 0.01 0.02 0.03 0.04 0.05
0

2

4
Iq

 in

0 0.01 0.02 0.03 0.04 0.05
-0.4

-0.2

0

Id
 in

0 0.01 0.02 0.03 0.04 0.05
0

50

V
q

in

0 0.01 0.02 0.03 0.04 0.05
-5

0

5

V
d

in

(a)

0 0.01 0.02 0.03 0.04 0.05
0

2

4

0 0.01 0.02 0.03 0.04 0.05
-0.4

-0.2

0

0 0.01 0.02 0.03 0.04 0.05
0

50

0 0.01 0.02 0.03 0.04 0.05
-5

0

5

(b)

Figure 39. (a) The four integrator values of the primary controller prior to
being serialized by the software. (b) The four output values of the

deserialization block in the secondary controller.

2. Simulated Output Results

The simulated graph of a single phase of the output when the theta values were

synchronized, and the serialized integrator values of the primary controller were passed

to the secondary controller is shown in Figure 40. The same output with all three phases

represented is shown in Figure 41. In these simulations the step function was set to occur

at 0.05 seconds, and the graphs were zoomed in on the switching event to try and detect

any minor disturbances in the sine wave. The simulated results indicated that passing the

 60

integrator values from the primary to the secondary controller through the serialization

software and latching the values in the secondary controller when a fault was detected

would eliminate the remaining disturbance in the software. The absence of any

disturbance in the computer simulated output indicated that this was a viable solution for

the redundant architecture that would meet military standards [1].

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
-100

-80

-60

-40

-20

0

20

40

60

80

100
Single Phase Full Sync

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 40. Simulated Single Phase Voltage Output with Theta Synchronized,
Initial Conditions Passed, and the Switching Event at 0.05 seconds.

 61

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
-100

-80

-60

-40

-20

0

20

40

60

80

100
3 Phase Full Sync

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 41. Simulated Three Phase Voltage Output with Theta Synchronized,
Initial Conditions Passed, and the Switching Event at 0.05 seconds.

C. EXPERIMENTAL RESULTS

1. Experimental Test of Serialization Software

The first experimental test that was developed was to demonstrate that the

serialized data from the primary board was actually being sent to the secondary board.

To provide experimental confirmation of this, the serialization block of the software was

loaded on the primary board with the same four constant values discussed in section B as

its four input values and the output pin assigned to the FPGA from Table 6. The

secondary board was then loaded with the deserialization block of the software along

with another serialization block. This configuration on the secondary board would take

the bit string from the primary board and deserialize the data back into four constant

values. Those four constant values were then sent back into the serialization block on the

 62

secondary board and sent out of the board as a second string of forty-eight bits with a

start and stop bit. If the data was being passed accurately from the primary to the

secondary controller, and the serialization and deserialization blocks of the software were

operating properly on the two FPGAs, the output string from the secondary controller

should have been identical to the output string from the primary controller with roughly a

50 sµ delay. The two individual bit strings from the primary and secondary boards are

shown in Figure 42. These two graphs show approximately a 55 sµ delay present in the

output of the secondary board due to the time it took for the data string from the primary

board to be deserialized into four constant values and then serialized back into a second

data string.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

x 10-5

-2

0

2

4

6

Time(sec)

S
er

ia
liz

at
io

n
fro

m
 C

on
tro

lle
r #

1

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

x 10-5

-2

0

2

4

6

Time(sec)

S
er

ia
liz

at
io

n
fro

m
 C

on
tro

lle
r #

2

Figure 42. Serialized Data of Four Constants from the Primary and Secondary
boards.

The time delay was removed and the two graphs were laid on top of each other to

make it easier to see whether or not the two bit streams were the same in Figure 43. The

 63

four constant values that were serialized and sent out of the primary board were identical

to the four constant values that were serialized and sent out of the secondary board.

Further analysis of the graph showed that the serialized data from both of the boards

corresponded to the forty-eight bit string in equation (6.1). These results experimentally

confirmed the simulated serialization results as well as the ability of a data string to be

passed from one physical board to another.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

x 10-5

-2

-1

0

1

2

3

4

5

6

7
Serialization of Four Constants

Time(sec)

Figure 43. The Serialized Output from the Secondary Controller
Superimposed on the Output from the Primary Controller

The limitations of operating Chipscope simultaneously on two separate boards

prevented experimental tests from being taken similar to the simulations presented in

Figure 39. It was not possible to collect data from both boards simultaneously because

Chipscope could only read one board at a time through the XILINX parallel cable. The

oscilloscope was also not able to be used to measure the actual integrator values because

it would have required forty-eight additional test pins from each board to pass all of the

 64

information out of the FPGAs. This inability to read the internal integrator values were

why the bit transfer test presented in this section was developed. This bit transfer test

along with the output results of the switching event in the next section provided sufficient

data that the integrator values were being transferred from the primary to the secondary

board correctly.

2. Experimental Output Results

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
-100

-80

-60

-40

-20

0

20

40

60

80

100
Three Measurements of Vbc Full Sync

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 44. Three Single Phase Experimental Output Measurements with
Theta Synchronized, Initial Conditions Passed, and the Switching

Event at 0.05 seconds.

Three experimental measurements of a single phase of the VSI output when both

the theta synchronization pulse and the initial conditions were being passed from the

primary to the secondary boards are shown in Figure 44. For these experimental tests the

switching control software that was used in the previous chapters was implemented in

order to take multiple measurements with the switching event at the same point of the

 65

output. The switching event for the experimental results occurred at 0.05 seconds on the

graph. All of the experimental measurements showed no disturbance in the VSI output

during the switching event.

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
-100

-80

-60

-40

-20

0

20

40

60

80

100
Measurement of Each Phase

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 45. Experimental Measurements of the Three Phases of the VSI
Output with Theta Synchronized, Initial Conditions Passed, and the

Switching Event at 0.05 seconds.

The oscilloscope used for the experimental results was not able to take readings of

all three phases of the output at the same time. However, since the switching event was

set to trigger at the same theta point for each measurement, it was possible to take

separate measurements of each phase and place them on the same graph in order to show

the effects of the switching event on each phase of the output. The experimental results of

all three phases of the output are shown in Figure 45. Despite the fact that the

measurements had significant distortion in the voltage output, the measurements of all

three phases showed no disturbance due to the switching event. Both the simulated and

 66

experimental output results provided a high level of confidence in the ability of this

design to switch from a primary to a secondary controller when a fault occurred with

virtually no disturbance to the output of the VSI.

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
-100

-80

-60

-40

-20

0

20

40

60

80

100
Full Sync Random Fault

Time(sec)

Li
ne

-to
-L

in
e

V
ol

ta
ge

Figure 46. Three Single Phase Experimental VSI Output Measurements with
Faults at random theta values and the Switching Event at 0.05 seconds.

All of the experimental results presented so far showed the switching event at a

forced position of the voltage output in order to lay multiple measurements on top of each

other. Since an actual redundant system would not want to force the fault signal to wait

for a second condition before it switched, it was necessary to take some output

measurements without the switching control software installed. Forcing the switching to

occur at the same theta value every time could have also hidden possible disturbances

when the system switched at an undefined theta value. In order to test this idea, three

experimental measurements were taken with the switching control software block

removed in order to observe the affects of the switching event on the voltage output at

 67

random points. The results of the three measurements with the switching event triggered

at 0.05 seconds are shown in Figure 46. Although the distortion was still present in all of

the measurements, there did not seem to be any significant disturbance in the outputs.

The only minor disturbance at the 0.05 second switching event was in the red and blue

graphs of the figure. However, the disturbance was so minor that it was difficult to

determine if it was disturbance due to the switching or just normal distortion of the

output.

D. CHAPTER SUMMARY

This chapter discussed the solution developed to be able to pass the four

integrator values of the primary controller to the secondary controller using a single

output pin on the primary controller and single input pin on the secondary controller. The

addition of communications software that enabled the four integrator values of the

primary controller to be serialized, sent through a signal bit output on the FPGA to the

secondary controller, and deserialized into the four individual values to be sent to the four

PI control block in the secondary controller was explained. The modifications to the PI

control blocks in the secondary controller that enabled it to read the values from the

primary controller and latch the last value sent when a fault was triggered was also

discussed in this chapter. Simulation and experimental test results on the serialization

software were presented to demonstrate its effectiveness in passing data accurately.

Simulated and experimental test results of the final VSI output were also presented,

which indicated that passing the integrator values from the primary to the secondary

controller eliminated the remaining amplitude disturbance caused by the switching event.

A degree of distortion on the output waves was also observed which could have produced

some minor disturbances during certain switching events. The next chapter presents the

final conclusions of this thesis along with the original contributions made by this

research. Possible follow on research that could be pursed in the future is also discussed.

 68

THIS PAGE INTENTIONALLY LEFT BLANK

 69

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis demonstrated the potential for the improved reliability of a VSI to be

achieved through the implementation of operating standby redundant controller

architecture. The VSI used in this thesis was designed using computer simulations that

were then validated through experimental results. The closed loop space vector

modulation controllers selected for this research were designed so that when a high/low

fault was detected the system would automatically switch from the primary to the

secondary controller. The secondary controller was designed to operate physically

independent of the primary controller to reduce the risk of damage when a fault occurred,

thereby providing true redundancy. After confirming that the initial redundant design

worked, modifications to the software were made to allow a theta synchronization pulse

from the primary to the secondary controller. This addition to the design eliminated the

random phase disturbance in the VSI output during the switching event. The final step in

the redundant design was the development of serialization software that would allow the

four integrator values of the primary controller to be passed to the secondary controller

through a single FPGA bit. Modifying the redundant software to pass the integrator

values from the primary to the secondary controller to act as initial conditions when a

fault occurred produced negligible disturbance in the VSI output during the switching

event.

The experimental measurements of the output when both the theta pulse and the

initial conditions were passed showed some distortion to the signal which might have

caused some minor disturbance during some of the switching events. This distortion was

most likely due to the selection of the PI gains and the hardware values. Creating a more

stable system by selecting ideal hardware and gain values could help reduce the

uncertainty of whether the minor disturbance during certain switching events was due to

the distortion in the output signal or an issue with the data transfer from the primary to

the secondary controller.

 70

B. RECOMMENDATIONS

There are still some questions to be answered before this design could be put into

any practical system. The ability of a VSI to switch to a redundant controller without any

significant output disturbance provides the basis for many follow on research topics.

Some possible future topics are discussed in the following sections.

1. Reduction of the Distortion in the VSI

When the VSI output of the experimental results was viewed closely, there was

significant distortion due to the gain values and noise in the system. This distortion could

be reduced by determining the ideal gain and hardware values for the system. Designing

a filter for the harmonic distortion could also improve the results which would help

determine if there were any minor random disturbances during the switching event that

were being hidden by the distortion of the output.

2. Additional Redundant Components

Demonstrating that it is possible for a VSI to switch to a redundant controller

without any disturbance in its output provides the basis to implement more redundant

components of the architecture presented in Chapter I of this thesis. Follow-on research

could implement this redundant controller design in a VSI with a four-switch pole

inverter topology.

 71

APPENDIX A: SPACE VECTOR MODULATION NOTES

 72

 73

 74

 75

APPENDIX B: VIRTEX II FPGA

 76

 77

APPENDIX C: CUSTOMIZED INTERFACE BOARD

A. PCB 123 LAYOUT

 78

B. SCHEMATIC

 79

APPENDIX D: THREE PHASE RECTIFIER

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

APPENDIX E: XILINX BLOCK CODE

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

APPENDIX F: MATLAB CODE

A. INITIALIZATION FILE

Vdc=120;
dc=120;
Vref=50;

Kp_i=.01/3*(Vdc/sqrt(3));%current PI gain is amplified to account for
the SV modulation scaling
Ki_i=6*(Vdc/sqrt(3)); %Current control loop gain
Kp_v=0.15;
Ki_v=2.5;

Vdc_comp=30;
Vcesat=2.3;
delaycount=1;
oversample=1; %1 4 work
fin=100;

tstop=40/60;
pulsect = 2400/oversample;
step_ct=1;
tstep = 40e-9*step_ct;
clkPeriod=tstep;
mod_index=.75;
F_mat = [0 0 0 1;1 1 2 0;2 2 3 0;3 3 0 0];
O_mat = F_mat;

s1=2*pi*1;
s2=2*pi*5000;
s3=2*pi*50000;
alpha=.0002*sqrt(3)/Vdc/2;

Lfa=350e-6;
Lfb=Lfa;
Lfc=Lfa;
Cf= 60e-6;
Cfa=Cf;Cfb=Cfa;Cfc=Cfb;
Loa=1e-4;
Lob=Loa;Loc=Loa;
Roa=20;
Rob=Roa;
Roc=Roa;

Amat_indI = -inv([Lfa -Lfb;Lfc Lfb+Lfc])*.005*[1 -1;1 2];
Bmat_indI = inv([Lfa -Lfb;Lfc Lfb+Lfc]);

 108

Cmat_indI = [1 0 ;0 1 ;-1 -1]; %Ic = -Ia-Ib
Dmat_indI = zeros(3,2);

Amat_caps = zeros(3);
Bmat_caps = [1/Cfa 0 0; 0 1/Cfb 0; 0 0 1/Cfc];
Cmat_caps = eye(3);
Dmat_caps = zeros(3);

Amat_load = [-Roa/Loa 0 0; 0 -Rob/Lob 0; 0 0 -Roc/Loc];
Bmat_load = [1/Loa 0 0; 0 1/Lob 0 ; 0 0 1/Loc];
Cmat_load = eye(3);
Dmat_load = zeros(3);

B. INTERNAL CODE

1. thetaconv2.m

function [y] = thetaconv(x)
gain1 = xfix({xlSigned,14,10},2*3.14);
gain2 = xfix({xlSigned,14,10},1/gain1)
if x<0
y=xfix({xlUnsigned,10,0},(x+gain1)*gain2*1024);
else
y=xfix({xlUnsigned,10,0},x*gain2*1024);
end

2. overflow3.m

function [sector1, sector2, sector3, sector4, sector5, sector6, z] =
overflow3(x)
%gain = xfix({xlUnsigned,10,7},2.359296/3);%for 60 hz
gain = xfix({xlUnsigned,10,7},2.359296);%for 180 hz
%tempv=gain*x;
tempv=x;
if tempv<=171-1
 sector1=xfix({xlBoolean},1);
 sector2=xfix({xlBoolean},0);
 sector3=xfix({xlBoolean},0);
 sector4=xfix({xlBoolean},0);
 sector5=xfix({xlBoolean},0);
 sector6=xfix({xlBoolean},0);
 z=xfix({xlUnsigned,10,0},tempv);
elseif tempv<=2*171-1
 sector1=xfix({xlBoolean},0);
 sector2=xfix({xlBoolean},1);
 sector3=xfix({xlBoolean},0);
 sector4=xfix({xlBoolean},0);
 sector5=xfix({xlBoolean},0);
 sector6=xfix({xlBoolean},0);
 z=xfix({xlUnsigned,10,0},tempv-171);
elseif tempv<=3*171-1

 109

 sector1=xfix({xlBoolean},0);
 sector2=xfix({xlBoolean},0);
 sector3=xfix({xlBoolean},1);
 sector4=xfix({xlBoolean},0);
 sector5=xfix({xlBoolean},0);
 sector6=xfix({xlBoolean},0);
 z=xfix({xlUnsigned,10,0},tempv-2*171);
elseif tempv<=4*171-1
 sector1=xfix({xlBoolean},0);
 sector2=xfix({xlBoolean},0);
 sector3=xfix({xlBoolean},0);
 sector4=xfix({xlBoolean},1);
 sector5=xfix({xlBoolean},0);
 sector6=xfix({xlBoolean},0);
 z=xfix({xlUnsigned,10,0},tempv-3*171);
elseif tempv<=5*171-1
 sector1=xfix({xlBoolean},0);
 sector2=xfix({xlBoolean},0);
 sector3=xfix({xlBoolean},0);
 sector4=xfix({xlBoolean},0);
 sector5=xfix({xlBoolean},1);
 sector6=xfix({xlBoolean},0);
 z=xfix({xlUnsigned,10,0},tempv-4*171);
else
 sector1=xfix({xlBoolean},0);
 sector2=xfix({xlBoolean},0);
 sector3=xfix({xlBoolean},0);
 sector4=xfix({xlBoolean},0);
 sector5=xfix({xlBoolean},0);
 sector6=xfix({xlBoolean},1);
 z=xfix({xlUnsigned,10,0},tempv-5*171);
end

3. ramp2mod.m

function z = ramp2(x)
gain=xfix({xlSigned,20,19},1/2400)
z=xfix({xlSigned,14,13},x*gain);

C. SERIALIZATION CODE

1. System Control Ring

function [Data_out, Index, Iq_en, Id_en, Vq_en, Vd_en, Busy, Send,
Counter] =
SystemControllerRingComm(Vd_Data_in,Id_Data_in,Vq_Data_in,Iq_Data_in,
Index_fb, Encoder_busy, Busy_fb, Iq_en_fb, Id_en_fb, Vq_en_fb,Vd_en_fb,
Counter_fb);

COUNTER_INITIAL_VALUE=100; %%

 110

%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Busy %%
%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger
condition
 Counter= xfix({xlUnsigned, 7, 0},COUNTER_INITIAL_VALUE);
 Busy=xfix({xlUnsigned,1,0},1);
elseif (Busy_fb==1) & (Index_fb==10) & (Iq_en_fb==0) & (Id_en_fb==0) &
(Vq_en_fb==0) & (Vd_en_fb==0);
 Counter=xfix({xlUnsigned, 7, 0},Counter_fb-1);
 Busy=xfix({xlUnsigned,1,0},0);
elseif (Busy_fb==1)
 Counter= xfix({xlUnsigned, 7, 0},COUNTER_INITIAL_VALUE);
 Busy=xfix({xlUnsigned,1,0},1);
else
 Counter=xfix({xlUnsigned, 7, 0},Counter_fb-1);
 Busy=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Send %%
%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger
condition
 Send=xfix({xlUnsigned,1,0},1);
elseif (Encoder_busy==1); %% Disable if encoder is busy
 Send=xfix({xlUnsigned,1,0},0);
elseif (Busy_fb==1) & (Index_fb==11) & (Iq_en_fb==0) & (Id_en_fb==0) &
(Vq_en_fb==0) & (Vd_en_fb==0);
 Send=xfix({xlUnsigned,1,0},1); %% End Case
elseif (Busy_fb==1);
 Send=xfix({xlUnsigned,1,0},1);
else
 Send=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Index %%
%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0); %% Trigger
condition
 Index=xfix({xlUnsigned,4,0},11);
elseif (Busy_fb==0)
 Index=xfix({xlUnsigned,4,0},0);
elseif (Encoder_busy==1)
 Index=xfix({xlUnsigned,4,0},Index_fb);
elseif (Index_fb>0) & (Encoder_busy==0) %% Decrement
 Index=xfix({xlUnsigned,4,0},Index_fb-1);
elseif (Index_fb==0)
 Index=xfix({xlUnsigned,4,0},11);
else
 Index=xfix({xlUnsigned,4,0},0);
end

 111

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Iq_en %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0) & (Encoder_busy==0) & (Counter_fb==0) %%trigger Case
 Iq_en=xfix({xlUnsigned,1,0},1);
elseif (Busy_fb==0)
 Iq_en=xfix({xlUnsigned,1,0},0);
elseif (Index_fb>0) & (Iq_en_fb==1)
 Iq_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Iq_en_fb==1) & (Encoder_busy==0)
 Iq_en=xfix({xlUnsigned,1,0},0);
elseif (Index_fb==0) & (Iq_en_fb==1) & (Encoder_busy==1)
 Iq_en=xfix({xlUnsigned,1,0},1);
else
 Iq_en=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Vq_en %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0);
 Vq_en=xfix({xlUnsigned,1,0},0);
elseif (Index_fb==0) & (Encoder_busy==0) & (Iq_en_fb==1)%% Start Vq_en
 Vq_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb>0) & (Vq_en_fb==1); %% the rest > 0
 Vq_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Encoder_busy==1) & (Vq_en_fb==1) %% last case
 Vq_en=xfix({xlUnsigned,1,0},1);
else
 Vq_en=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Id_en %%
%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0);
 Id_en=xfix({xlUnsigned,1,0},0);
elseif (Index_fb==0) & (Encoder_busy==0) & (Vq_en_fb==1)%% Start Id_en
 Id_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb>0) & (Id_en_fb==1); %% the rest > 0
 Id_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Encoder_busy==1) & (Id_en_fb==1) %% last case
 Id_en=xfix({xlUnsigned,1,0},1);
else
 Id_en=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Vd_en %%
%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0);
 Vd_en=xfix({xlUnsigned,1,0},0);
elseif (Index_fb==0) & (Encoder_busy==0) & (Id_en_fb==1)%% Start Vd_en
 Vd_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb>0) & (Vd_en_fb==1); %% the rest > 0

 112

 Vd_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Encoder_busy==1) & (Vd_en_fb==1) %% last case
 Vd_en=xfix({xlUnsigned,1,0},1);
else
 Vd_en=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Data out %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (Busy_fb==0) %% Start bit
 Data_out=xfix({xlUnsigned,1,0},0);
elseif(Busy_fb==1)
 if (Iq_en_fb==1)
 if (Index_fb == 11)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,11,11));
 elseif (Index_fb == 10)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,10,10));
 elseif (Index_fb == 9)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,9,9));
 elseif (Index_fb == 8)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,8,8));
 elseif (Index_fb == 7)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,7,7));
 elseif (Index_fb == 6)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,6,6));
 elseif (Index_fb == 5)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,5,5));
 elseif (Index_fb == 4)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,4,4));
 elseif (Index_fb == 3)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,3,3));
 elseif (Index_fb == 2)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,2,2));
 elseif (Index_fb == 1)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,1,1));
 else
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Iq_Data_in,0,0));
 end

 elseif (Vq_en_fb==1)
 if (Index_fb == 11)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,11,11));
 elseif (Index_fb == 10)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,10,10));
 elseif (Index_fb == 9)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,9,9));
 elseif (Index_fb == 8)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,8,8));
 elseif (Index_fb == 7)

 113

 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,7,7));
 elseif (Index_fb == 6)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,6,6));
 elseif (Index_fb == 5)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,5,5));
 elseif (Index_fb == 4)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,4,4));
 elseif (Index_fb == 3)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,3,3));
 elseif (Index_fb == 2)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,2,2));
 elseif (Index_fb == 1)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,1,1));
 else
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vq_Data_in,0,0));
 end

 elseif (Id_en_fb==1)
 if (Index_fb == 11)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,11,11));
 elseif (Index_fb == 10)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,10,10));
 elseif (Index_fb == 9)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,9,9));
 elseif (Index_fb == 8)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,8,8));
 elseif (Index_fb == 7)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,7,7));
 elseif (Index_fb == 6)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,6,6));
 elseif (Index_fb == 5)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,5,5));
 elseif (Index_fb == 4)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,4,4));
 elseif (Index_fb == 3)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,3,3));
 elseif (Index_fb == 2)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,2,2));
 elseif (Index_fb == 1)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,1,1));
 else
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Id_Data_in,0,0));
 end

 elseif (Vd_en_fb==1)
 if (Index_fb == 11)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,11,11));
 elseif (Index_fb == 10)
 Data_out =
xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,10,10));
 elseif (Index_fb == 9)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,9,9));

 114

 elseif (Index_fb == 8)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,8,8));
 elseif (Index_fb == 7)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,7,7));
 elseif (Index_fb == 6)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,6,6));
 elseif (Index_fb == 5)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,5,5));
 elseif (Index_fb == 4)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,4,4));
 elseif (Index_fb == 3)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,3,3));
 elseif (Index_fb == 2)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,2,2));
 elseif (Index_fb == 1)
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,1,1));
 else
 Data_out = xfix({xlUnsigned,1,0},xl_slice(Vd_Data_in,0,0));
 end

 elseif (Index_fb==11)
 Data_out = xfix({xlUnsigned,1,0},1); %% Stop Bit
 else
 Data_out=xfix({xlUnsigned,1,0},1);
 end
else
 Data_out=xfix({xlUnsigned,1,0},0);
end

2. Manchester Encoder

function [Counter,Data_out, Busy] = ManchesterEncoder(Counter_fb,
Data_in, Send, Data_fb, Busy_fb)

COUNTER_INITIAL_VALUE =24;
HALF_OUTPUT_WIDTH = 13;

%%%%%%%%%%%%%%%%%%%%%
%% Logic for Busy %%
%%%%%%%%%%%%%%%%%%%%%
if (Send == 1) & (Busy_fb == 0);
 Busy = xfix({xlUnsigned, 1, 0},1);
elseif (Busy_fb == 1) & (Counter_fb > 2) %count to 2 instead of zero
 Busy = xfix({xlUnsigned, 1, 0},1);
else
 Busy= xfix({xlUnsigned, 1, 0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Data_out %%

 115

%%%%%%%%%%%%%%%%%%%%%%%%
if (Send == 1) & (Busy_fb == 0) & (Data_in == 0) %%Start sending a 0->1
tran
 Data_out=xfix({xlUnsigned, 1, 0},0);
elseif (Send == 1) & (Busy_fb == 0) & (Data_in == 1) %%Start sending a
0->tran
 Data_out=xfix({xlUnsigned, 1, 0},1);
elseif (Busy_fb == 1) & (Counter_fb == HALF_OUTPUT_WIDTH) %%Toggle
output
 Data_out=xfix({xlUnsigned, 1, 0}, (Data_fb +1));
else
 Data_out=xfix({xlUnsigned, 1, 0}, Data_fb);
end

%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Counter %%
%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb == 0)
 Counter= xfix({xlUnsigned, 5, 0},COUNTER_INITIAL_VALUE);
elseif (Counter_fb==0)
 Counter= xfix({xlUnsigned, 5, 0},COUNTER_INITIAL_VALUE);
else
 Counter=xfix({xlUnsigned, 5, 0},Counter_fb-1);
end

3. Manchester Decoder

function [Busy, Data_out, Counter, Data_valid,Data_fil] =
ManchesterDecoder (Busy_fb, Data_Delayed, Data_in, Data_out_fb,
Counter_fb,In_delay1,In_delay2)

COUNTER_INITIAL_VALUE=16; %%

%%%%%%%%%%%%%%%%%%%%%%%%% Checks that three samples in a row
transition
%%%%%%%%%%%%%%%%%%%%%%%%% before changing the input data
%% Filter for Data_in %%
%%%%%%%%%%%%%%%%%%%%%%%%%
if (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 0) &(Data_Delayed
== 0);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 0)
&(Data_Delayed == 1);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 1)
&(Data_Delayed == 0);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delay1 == 0) &(In_delay2 == 1)
&(Data_Delayed == 1);
 Data_fil=xfix({xlUnsigned, 1, 0},1);

 116

elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 0)
&(Data_Delayed == 0);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 0)
&(Data_Delayed == 1);
 Data_fil=xfix({xlUnsigned, 1, 0},1);
elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 1)
&(Data_Delayed == 0);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 0) & (In_delay1 == 1) &(In_delay2 == 1)
&(Data_Delayed == 1);
 Data_fil=xfix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 0)
&(Data_Delayed == 0);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 0)
&(Data_Delayed == 1);
 Data_fil=xfix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 1)
&(Data_Delayed == 0);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 1) & (In_delay1 == 0) &(In_delay2 == 1)
&(Data_Delayed == 1);
 Data_fil=xfix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delay1 == 1) &(In_delay2 == 0)
&(Data_Delayed == 0);
 Data_fil=xfix({xlUnsigned, 1, 0},0);
elseif (Data_in == 1) & (In_delay1 == 1) &(In_delay2 == 0)
&(Data_Delayed == 1);
 Data_fil=xfix({xlUnsigned, 1, 0},1);
elseif (Data_in == 1) & (In_delay1 == 1) &(In_delay2 == 1)
&(Data_Delayed == 0);
 Data_fil=xfix({xlUnsigned, 1, 0},1);
else
 Data_fil=xfix({xlUnsigned, 1, 0},1);
end

%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Busy %%
%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb == 0) & (Data_fil ~= Data_Delayed);
 Busy=xfix({xlUnsigned, 1, 0},1);
elseif (Busy_fb == 1) & (Counter_fb >0);
 Busy=xfix({xlUnsigned, 1, 0},1);
else
 Busy=xfix({xlUnsigned, 1, 0},0);
end

%%%
%% Logic for Data_out and Data_valid %%
%%%
if (Busy_fb == 0) & ((Data_fil == 1) & (Data_Delayed == 0)); %%edge
detected
 Data_out=xfix({xlUnsigned, 1, 0},0);
 Data_valid=xfix({xlUnsigned, 1, 0},1);

 117

elseif (Busy_fb == 0) & ((Data_fil == 0) & (Data_Delayed == 1));%%1->0
transition
 Data_out=xfix({xlUnsigned, 1, 0},1);
 Data_valid=xfix({xlUnsigned, 1, 0},1);
else
 Data_out=xfix({xlUnsigned, 1, 0},0);
 Data_valid=xfix({xlUnsigned, 1, 0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Counter %%
%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb == 0) & (Data_fil ~= Data_Delayed);
 Counter=xfix({xlUnsigned, 6, 0},Counter_fb-1);
elseif (Busy_fb == 1) & (Counter_fb >0);
 Counter=xfix({xlUnsigned, 6, 0},Counter_fb-1);
else
 Counter = xfix({xlUnsigned, 6, 0},COUNTER_INITIAL_VALUE);
end

4. Ring Decoder

function [Data_out, Iq_en, Id_en, Vq, Vd_en, Busy, Index, Write,
Counter] = RingCommDecoder(Data_in, Data_valid, Iq_en_fb, Id_en_fb,
Vq_fb, Vd_en_fb, Busy_fb, Index_fb, Data_out_fb, Counter_fb)

START_BIT=0;
STOP_BIT=1;
DEADTIME_VALUE=40; %%
WATCHDOG_VALUE=200; %%

%%%%%%%%%%%%%%%%%%%%%%
%% Logic for CTR %%
%%%%%%%%%%%%%%%%%%%%%%
if (Data_valid==1); %% data keeps resetting the counter
 Counter= xfix({xlUnsigned, 8, 0},0);
elseif (Counter_fb>WATCHDOG_VALUE) %% watchdog fault condition
 Counter=xfix({xlUnsigned, 8, 0},Counter_fb+1);
else
 Counter=xfix({xlUnsigned, 8, 0},Counter_fb+1);
end

%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Busy %%
%%%%%%%%%%%%%%%%%%%%%%
if (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) &
(Counter_fb>DEADTIME_VALUE) %%Trigger condition
 Busy=xfix({xlUnsigned,1,0},1);
elseif (Busy_fb==0)
 Busy=xfix({xlUnsigned,1,0},0);

 118

elseif (Data_in==STOP_BIT) & (Data_valid==1) & (Index_fb==11) &
(Iq_en_fb==0) & (Id_en_fb==0) & (Vq_fb==0) & (Vd_en_fb==0); %%Stop
Case
 Busy=xfix({xlUnsigned,1,0},0);
elseif (Busy_fb==1) %% Otherwise latch the Busy_fb value
 Busy=xfix({xlUnsigned,1,0},1);
else
 Busy=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Index %%
%%%%%%%%%%%%%%%%%%%%%%%
if (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) &
(Counter_fb>DEADTIME_VALUE) %%Trigger condition
 Index=xfix({xlUnsigned,4,0},11);
elseif (Busy_fb==0) %% Idle other than the trigger
 Index=xfix({xlUnsigned,4,0},0);
elseif (Data_valid==0) %% Data not valid
 Index=xfix({xlUnsigned,4,0},Index_fb);
elseif (Index_fb==11) & (Iq_en_fb==0) & (Id_en_fb==0) & (Vq_fb==0) &
(Vd_en_fb==0); %%Stop Case
 Index=xfix({xlUnsigned,4,0},0);
elseif (Index_fb>0) %% Decrement Condition
 Index=xfix({xlUnsigned,4,0},Index_fb-1);
elseif (Index_fb==0)
 Index=xfix({xlUnsigned,4,0},11);
else
 Index=xfix({xlUnsigned,4,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Iq_en %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Data_in==START_BIT) & (Data_valid==1) & (Busy_fb==0) &
(Counter_fb>DEADTIME_VALUE) %%Trigger condition
 Iq_en=xfix({xlUnsigned,1,0},1);
elseif (Iq_en_fb==0)
 Iq_en=xfix({xlUnsigned,1,0},0);
elseif (Busy_fb==0)
 Iq_en=xfix({xlUnsigned,1,0},0);
elseif (Data_valid==0)
 Iq_en=xfix({xlUnsigned,1,0},Iq_en_fb);
elseif (Index_fb>0) & (Iq_en_fb==1);
 Iq_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Iq_en_fb==1)
 Iq_en=xfix({xlUnsigned,1,0},0);
else
 Iq_en=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Id_en %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0)

 119

 Id_en=xfix({xlUnsigned,1,0},0);
elseif (Data_valid==0)
 Id_en=xfix({xlUnsigned,1,0},Id_en_fb);
elseif (Index_fb==0) & (Iq_en_fb==1) %% First instance
 Id_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb>0) & (Id_en_fb==1); %% Body
 Id_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Id_en_fb==1); %%Stop case
 Id_en=xfix({xlUnsigned,1,0},0);
else
 Id_en=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Vq %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0)
 Vq=xfix({xlUnsigned,1,0},0);
elseif (Data_valid==0)
 Vq=xfix({xlUnsigned,1,0},Vq_fb);
elseif (Index_fb==0) & (Id_en_fb==1) %% First instance
 Vq=xfix({xlUnsigned,1,0},1);
elseif (Index_fb>0) & (Vq_fb==1); %% Body
 Vq=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Vq_fb==1); %%Stop case
 Vq=xfix({xlUnsigned,1,0},0);
else
 Vq=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Vd_en %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0)
 Vd_en=xfix({xlUnsigned,1,0},0);
elseif (Data_valid==0)
 Vd_en=xfix({xlUnsigned,1,0},Vd_en_fb);
elseif (Index_fb==0) & (Vq_fb==1) %% First instance
 Vd_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb>0) & (Vd_en_fb==1); %% Body
 Vd_en=xfix({xlUnsigned,1,0},1);
elseif (Index_fb==0) & (Vd_en_fb==1); %%Stop case
 Vd_en=xfix({xlUnsigned,1,0},0);
else
 Vd_en=xfix({xlUnsigned,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Write
%%(Data_valid==1) &
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Data_valid==1) & (Index_fb==0) & (Busy_fb==1) & ((Iq_en_fb==1) |
(Id_en_fb==1) | (Vq_fb==1) | (Vd_en_fb==1));
 Write=xfix({xlBoolean},1);
else

 120

 Write=xfix({xlBoolean,1,0},0);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Logic for Data_out %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if (Busy_fb==0)
 Data_out=xfix({xlUnsigned,12,0},0);
elseif (Data_valid==0)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb);
elseif (Data_valid==1)
 if (Index_fb==11)
 Data_out=xfix({xlUnsigned,12,0},(2048 * Data_in));
 elseif (Index_fb==10)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (1024 *
Data_in));
 elseif (Index_fb==9)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (512 * Data_in));
 elseif (Index_fb==8)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (256 * Data_in));
 elseif (Index_fb==7)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (128 * Data_in));
 elseif (Index_fb==6)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (64 * Data_in));
 elseif (Index_fb==5)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (32 * Data_in));
 elseif (Index_fb==4)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (16 * Data_in));
 elseif (Index_fb==3)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (8 * Data_in));
 elseif (Index_fb==2)
 Data_out=xfix({xlUnsigned,12,0},Data_out_fb + (4 * Data_in));
 elseif (Index_fb==1)
 Data_out=xfix({xlUnsigned,12,0},(Data_out_fb + (2 * Data_in)));
 else
 Data_out=xfix({xlUnsigned,12,0},(Data_out_fb + Data_in));
 end
else
 Data_out=xfix({xlUnsigned,12,0},(Data_out_fb));
end

D. CHIPSCOPE CODE

function code_config(this_block)

 % Revision History:
 %
 % 11-May-2007 (09:32 hours):
 % Original code was machine generated by Xilinx's System
Generator after parsing
 % H:\Docs\work_files\faculty forms\lab
development\buck_converter\black_box_buck.vhd

 121

 %
 %

 this_block.setTopLevelLanguage('VHDL');

 this_block.setEntityName('code');

 % System Generator has to assume that your entity has a
combinational feed through;
 % if it doesn't, then comment out the following line:
 this_block.tagAsCombinational;

 this_block.addSimulinkInport('ind');
 this_block.addSimulinkInport('ila_clock');
 this_block.addSimulinkInport('ind2');

 this_block.addSimulinkOutport('outd');
 this_block.addSimulinkOutport('load_on');

 outd_port = this_block.port('outd');
 outd_port.setType('UFix_1_0');
 load_on_port = this_block.port('load_on');
 load_on_port.setType('UFix_1_0');

 % -----------------------------
 if (this_block.inputTypesKnown)
 % do input type checking, dynamic output type and generic setup in
this code block.

 if (this_block.port('ind').width ~= 1);
 this_block.setError('Input data type for port "ind" must have
width=1.');
 end

 this_block.port('ind').useHDLVector(false);

 if (this_block.port('ila_clock').width ~= 1);
 this_block.setError('Input data type for port "ila_clock" must
have width=1.');
 end

 this_block.port('ila_clock').useHDLVector(false);

 if (this_block.port('ind2').width ~= 48);
 this_block.setError('Input data type for port "ind2" must have
width=48.');
 end

 end % if(inputTypesKnown)
 % -----------------------------

 % -----------------------------
 if (this_block.inputRatesKnown)

 122

 setup_as_single_rate(this_block,'clk','ce')
 end % if(inputRatesKnown)
 % -----------------------------

 % Add addtional source files as needed.
 % |-------------
 % | Add files in the order in which they should be compiled.
 % | If two files "a.vhd" and "b.vhd" contain the entities
 % | entity_a and entity_b, and entity_a contains a
 % | component of type entity_b, the correct sequence of
 % | addFile() calls would be:
 % | this_block.addFile('b.vhd');
 % | this_block.addFile('a.vhd');
 % |-------------

 % this_block.addFile('');
 % this_block.addFile('');
 this_block.addFile('black_box_buck.vhd');

return;

% --

function setup_as_single_rate(block,clkname,cename)
 inputRates = block.inputRates;
 uniqueInputRates = unique(inputRates);
 if (length(uniqueInputRates)==1 & uniqueInputRates(1)==Inf)
 block.setError('The inputs to this block cannot all be constant.');
 return;
 end
 if (uniqueInputRates(end) == Inf)
 hasConstantInput = true;
 uniqueInputRates = uniqueInputRates(1:end-1);
 end
 if (length(uniqueInputRates) ~= 1)
 block.setError('The inputs to this block must run at a single
rate.');
 return;
 end
 theInputRate = uniqueInputRates(1);
 for i = 1:block.numSimulinkOutports
 block.outport(i).setRate(theInputRate);
 end
 block.addClkCEPair(clkname,cename,theInputRate);
 return;

% --

 123

LIST OF REFERENCES

[1] MIL-STD-1399, “Interface standard for shipboard systems,” Section 300A,
 October 1987.

[2] U. De Pra, D. Baert, and H. Kuyken, “Analysis of the degree of reliability of a
 redundant modular inverter structure,” presented at the 20th international
 Telecommunications Energy Conference, San Francisco, October 1998.

[3] Debaprasad Kastha and Bimal K. Bose, “Investigation of fault modes of voltage-
 fed inverter system for induction motor drive,” IEEE Trans. on Industry
 Applications, Vol. 30, No. 4, pp. 1028-1038, 1994.

[4] R. D. Klug and A. Mertens, “Reliability of megawatt drive concepts,” presented
 at the IEEE international conference on Power System Technology, Vol. 2, pp.
 636-641, 2003.

[5] Alexander L. Julian and Giovanna Oriti, “A comparison of redundant inverter
 topologies to improve voltage source inverter reliability,” IEEE Trans. on
 Industry Applications, Vol. 43, No. 5, pp. 1371-1378, 2007.

[6] Benjamin S. Blanchard, Wolter J. Fabrycky, Systems Engineering and Analysis,
 pp. 372-380, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2006.

[7] Alexander L. Julian, private conversation at Naval Postgraduate School, 15
 November 2006.

[8] Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff, Analysis of Electric
 Machinery and Drive Systems pp. 113, IEEE Press, New York, 2002.

[9] Alexander L. Julian, Notes for EC4150 (Advanced Solid State Power
 Conversion), Naval Postgraduate School, Monterey, California, 2007
 (unpublished).

[10] Alexander L. Julian, private conversation at Naval Postgraduate School, 5 June
 2007.

 [11] MEMECTM cooperation “Virtex-IITM XC2V40/XC2V1000 Reference Board
 User’s Guide” Version 2.0 July 2001.

[12] Semikron products market information
 http://www.semikron.com/internet/index.jsp?sekId=356 last visited 27 October
 2007.

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Dr. Jeffrey Knorr, Chairman, Department of Electrical and Computer Engineering
 Code EC/Ko
 Naval Postgraduate School
 Monterey, California

4. Dr. Alexander L. Julian, Department of Electrical and Computer Engineering
 Code EC/J1
 Naval Postgraduate School
 Monterey, California

